Cargando…
Multi-Scale Fusion Localization Based on Magnetic Trajectory Sequence
Magnetic fingerprint has a multitude of advantages in the application of indoor positioning, but as a weak magnetic field, the dynamic range of the data is limited, which exerts direct influence on the positioning accuracy. Aiming at resolving the problem wherein the indoor magnetic positioning resu...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824090/ https://www.ncbi.nlm.nih.gov/pubmed/36617046 http://dx.doi.org/10.3390/s23010449 |
Sumario: | Magnetic fingerprint has a multitude of advantages in the application of indoor positioning, but as a weak magnetic field, the dynamic range of the data is limited, which exerts direct influence on the positioning accuracy. Aiming at resolving the problem wherein the indoor magnetic positioning results tremendously rest with the magnetic characteristics, this paper puts forward a method based on deep learning to fuse the temporal and spatial characteristics of magnetic fingerprints, to fully explore the magnetic characteristics and to obtain stable and trustworthy positioning results. First and foremost, the trajectory of the acquisition area is extracted by adopting the ameliorated random waypoint model, and the simulation of pedestrian trajectory is completed. Then, the magnetic sequence is obtained by mapping the magnetic data. Aside from that, considering the scale characteristics of the sequence, a scale transformation unit is designed to obtain multi-scale features. At length, the neural network self-attention mechanism is adopted to fuse multiple features and output the positioning results. By probing into the positioning results of dissimilar indoor scenes, this method can adapt to diverse scenes. The average positioning error in a corridor, open area and complex area reaches 0.65 m, 0.93 m and 1.38 m respectively. The addition of multi-scale features has certain reference value for ameliorating the positioning performance. |
---|