Cargando…
Synaptic Characteristic of Hafnia-Based Ferroelectric Tunnel Junction Device for Neuromorphic Computing Application
Owing to the 4th Industrial Revolution, the amount of unstructured data, such as voice and video data, is rapidly increasing. Brain-inspired neuromorphic computing is a new computing method that can efficiently and parallelly process rapidly increasing data. Among artificial neural networks that mim...
Autores principales: | Kho, Wonwoo, Park, Gyuil, Kim, Jisoo, Hwang, Hyunjoo, Byun, Jisu, Kang, Yoomi, Kang, Minjeong, Ahn, Seung-Eon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824137/ https://www.ncbi.nlm.nih.gov/pubmed/36616024 http://dx.doi.org/10.3390/nano13010114 |
Ejemplares similares
-
Spike Optimization to Improve Properties of Ferroelectric Tunnel Junction Synaptic Devices for Neuromorphic Computing System Applications
por: Byun, Jisu, et al.
Publicado: (2023) -
Improvement of Resistance Change Memory Characteristics in Ferroelectric and Antiferroelectric (like) Parallel Structures
por: Kho, Wonwoo, et al.
Publicado: (2023) -
Ferroelectric Tunneling Junctions Based on Aluminum Oxide/ Zirconium-Doped Hafnium Oxide for Neuromorphic Computing
por: Ryu, Hojoon, et al.
Publicado: (2019) -
A highly CMOS compatible hafnia-based ferroelectric diode
por: Luo, Qing, et al.
Publicado: (2020) -
Functional ferroelectric tunnel junctions on silicon
por: Guo, Rui, et al.
Publicado: (2015)