Cargando…

Gold Nanoparticles/Nanographene-Based 3D Sensors Integrated in Mini-Platforms for Thiamine Detection

Vitamins are essential for sustaining daily activities and perform crucial roles in metabolism, such as preventing vascular events and delaying the development of diabetic nephropathy. The ultrasensitive assessment of thiamine in foods is required for food quality evaluation. A mini-platform utilizi...

Descripción completa

Detalles Bibliográficos
Autores principales: Gheorghe, Damaris-Cristina, van Staden, Jacobus (Koos) Frederick, Stefan-van Staden, Raluca-Ioana, Sfirloaga, Paula
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824161/
https://www.ncbi.nlm.nih.gov/pubmed/36616942
http://dx.doi.org/10.3390/s23010344
Descripción
Sumario:Vitamins are essential for sustaining daily activities and perform crucial roles in metabolism, such as preventing vascular events and delaying the development of diabetic nephropathy. The ultrasensitive assessment of thiamine in foods is required for food quality evaluation. A mini-platform utilizing two 3D sensors based on nanographene and gold nanoparticles paste modified with protoporphyrin IX and protoporphyrin IX cobalt chloride is proposed for the detection of thiamine in blueberry syrup, multivitamin tablets, water, and a biological sample (urine). Differential pulse voltammetry was utilized for the characterization and validation of the suggested sensors. The sensor modified with protoporphyrin IX has a detection limit of 3.0 × 10(−13) mol L(−1) and a quantification limit of 1.0 × 10(−12) mol L(−1), whereas the sensor modified with protoporphyrin IX cobalt chloride has detection and quantification limits of 3.0 × 10(−12) and 1.0 × 10(−11) mol L(−1), respectively. High recoveries (values greater than 95.00%) and low RSD (%) values (less than 5.00%) are recorded for both 3D sensors when used for the determination of thiamine in blueberry syrup, multivitamin tablets, water, and urine, demonstrating the 3D sensors’ and suggested method’s high reliability.