Cargando…
Comparative Study of Machine Learning Models for Bee Colony Acoustic Pattern Classification on Low Computational Resources
In precision beekeeping, the automatic recognition of colony states to assess the health status of bee colonies with dedicated hardware is an important challenge for researchers, and the use of machine learning (ML) models to predict acoustic patterns has increased attention. In this work, five clas...
Autores principales: | Robles-Guerrero, Antonio, Saucedo-Anaya, Tonatiuh, Guerrero-Mendez, Carlos A., Gómez-Jiménez, Salvador, Navarro-Solís, David J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824169/ https://www.ncbi.nlm.nih.gov/pubmed/36617059 http://dx.doi.org/10.3390/s23010460 |
Ejemplares similares
-
Applicability of VGGish embedding in bee colony monitoring: comparison with MFCC in colony sound classification
por: Di, Nayan, et al.
Publicado: (2023) -
Cancer Classification Based on Support Vector Machine Optimized by Particle Swarm Optimization and Artificial Bee Colony
por: Gao, Lingyun, et al.
Publicado: (2017) -
Feature Selection Method Based on Artificial Bee Colony Algorithm and Support Vector Machines for Medical Datasets Classification
por: Uzer, Mustafa Serter, et al.
Publicado: (2013) -
Bee Swarm Activity Acoustic Classification for an IoT-Based Farm Service
por: Zgank, Andrej
Publicado: (2019) -
Artificial Bee Colony Based Gabor Parameters Optimizer (ABC-GPO) for Modulation Classification
por: AlJubayrin, Saad, et al.
Publicado: (2022)