Cargando…
Missing Traffic Data Imputation with a Linear Generative Model Based on Probabilistic Principal Component Analysis
Even with the ubiquitous sensing data in intelligent transportation systems, such as the mobile sensing of vehicle trajectories, traffic estimation is still faced with the data missing problem due to the detector faults or limited number of probe vehicles as mobile sensors. Such data missing issue p...
Autores principales: | Huang, Liping, Li, Zhenghuan, Luo, Ruikang, Su, Rong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824200/ https://www.ncbi.nlm.nih.gov/pubmed/36616802 http://dx.doi.org/10.3390/s23010204 |
Ejemplares similares
-
Imputing Missing Data in Hourly Traffic Counts
por: Shafique, Muhammad Awais
Publicado: (2022) -
Probabilistic principal component analysis for metabolomic data
por: Nyamundanda, Gift, et al.
Publicado: (2010) -
Flexible imputation of missing data
por: van Buuren, Stef
Publicado: (2018) -
Missing Data and Imputation Methods
por: Schober, Patrick, et al.
Publicado: (2020) -
Generative adversarial networks for imputing missing data for big data clinical research
por: Dong, Weinan, et al.
Publicado: (2021)