Cargando…
Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment
Motion analysis is an area with several applications for health, sports, and entertainment. The high cost of state-of-the-art equipment in the health field makes it unfeasible to apply this technique in the clinics’ routines. In this vein, RGB-D and RGB equipment, which have joint tracking tools, ar...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824231/ https://www.ncbi.nlm.nih.gov/pubmed/36616603 http://dx.doi.org/10.3390/s23010003 |
_version_ | 1784866358930964480 |
---|---|
author | Lafayette, Thiago Buarque de Gusmão Kunst, Victor Hugo de Lima Melo, Pedro Vanderlei de Sousa Guedes, Paulo de Oliveira Teixeira, João Marcelo Xavier Natário de Vasconcelos, Cínthia Rodrigues Teichrieb, Veronica da Gama, Alana Elza Fontes |
author_facet | Lafayette, Thiago Buarque de Gusmão Kunst, Victor Hugo de Lima Melo, Pedro Vanderlei de Sousa Guedes, Paulo de Oliveira Teixeira, João Marcelo Xavier Natário de Vasconcelos, Cínthia Rodrigues Teichrieb, Veronica da Gama, Alana Elza Fontes |
author_sort | Lafayette, Thiago Buarque de Gusmão |
collection | PubMed |
description | Motion analysis is an area with several applications for health, sports, and entertainment. The high cost of state-of-the-art equipment in the health field makes it unfeasible to apply this technique in the clinics’ routines. In this vein, RGB-D and RGB equipment, which have joint tracking tools, are tested with portable and low-cost solutions to enable computational motion analysis. The recent release of Google MediaPipe, a joint inference tracking technique that uses conventional RGB cameras, can be considered a milestone due to its ability to estimate depth coordinates in planar images. In light of this, this work aims to evaluate the measurement of angular variation from RGB-D and RGB sensor data against the Qualisys Tracking Manager gold standard. A total of 60 recordings were performed for each upper and lower limb movement in two different position configurations concerning the sensors. Google’s MediaPipe usage obtained close results compared to Kinect V2 sensor in the inherent aspects of absolute error, RMS, and correlation to the gold standard, presenting lower dispersion values and error metrics, which is more positive. In the comparison with equipment commonly used in physical evaluations, MediaPipe had an error within the error range of short- and long-arm goniometers. |
format | Online Article Text |
id | pubmed-9824231 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98242312023-01-08 Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment Lafayette, Thiago Buarque de Gusmão Kunst, Victor Hugo de Lima Melo, Pedro Vanderlei de Sousa Guedes, Paulo de Oliveira Teixeira, João Marcelo Xavier Natário de Vasconcelos, Cínthia Rodrigues Teichrieb, Veronica da Gama, Alana Elza Fontes Sensors (Basel) Article Motion analysis is an area with several applications for health, sports, and entertainment. The high cost of state-of-the-art equipment in the health field makes it unfeasible to apply this technique in the clinics’ routines. In this vein, RGB-D and RGB equipment, which have joint tracking tools, are tested with portable and low-cost solutions to enable computational motion analysis. The recent release of Google MediaPipe, a joint inference tracking technique that uses conventional RGB cameras, can be considered a milestone due to its ability to estimate depth coordinates in planar images. In light of this, this work aims to evaluate the measurement of angular variation from RGB-D and RGB sensor data against the Qualisys Tracking Manager gold standard. A total of 60 recordings were performed for each upper and lower limb movement in two different position configurations concerning the sensors. Google’s MediaPipe usage obtained close results compared to Kinect V2 sensor in the inherent aspects of absolute error, RMS, and correlation to the gold standard, presenting lower dispersion values and error metrics, which is more positive. In the comparison with equipment commonly used in physical evaluations, MediaPipe had an error within the error range of short- and long-arm goniometers. MDPI 2022-12-20 /pmc/articles/PMC9824231/ /pubmed/36616603 http://dx.doi.org/10.3390/s23010003 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Lafayette, Thiago Buarque de Gusmão Kunst, Victor Hugo de Lima Melo, Pedro Vanderlei de Sousa Guedes, Paulo de Oliveira Teixeira, João Marcelo Xavier Natário de Vasconcelos, Cínthia Rodrigues Teichrieb, Veronica da Gama, Alana Elza Fontes Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title | Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title_full | Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title_fullStr | Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title_full_unstemmed | Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title_short | Validation of Angle Estimation Based on Body Tracking Data from RGB-D and RGB Cameras for Biomechanical Assessment |
title_sort | validation of angle estimation based on body tracking data from rgb-d and rgb cameras for biomechanical assessment |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824231/ https://www.ncbi.nlm.nih.gov/pubmed/36616603 http://dx.doi.org/10.3390/s23010003 |
work_keys_str_mv | AT lafayettethiagobuarquedegusmao validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT kunstvictorhugodelima validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT melopedrovanderleidesousa validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT guedespaulodeoliveira validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT teixeirajoaomarceloxaviernatario validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT devasconceloscinthiarodrigues validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT teichriebveronica validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment AT dagamaalanaelzafontes validationofangleestimationbasedonbodytrackingdatafromrgbdandrgbcamerasforbiomechanicalassessment |