Cargando…
Machine Learning-Based Crop Stress Detection in Greenhouses
Greenhouse climate control systems are usually based on greenhouse microclimate settings to exert any control. However, to save energy, water and nutrients, additional parameters related to crop performance and physiology will have to be considered. In addition, detecting crop stress before it is cl...
Autores principales: | Elvanidi, Angeliki, Katsoulas, Nikolaos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824263/ https://www.ncbi.nlm.nih.gov/pubmed/36616180 http://dx.doi.org/10.3390/plants12010052 |
Ejemplares similares
-
Estimating cucumber crop coefficients under different greenhouse microclimatic conditions
por: Nikolaou, Georgios, et al.
Publicado: (2023) -
Prediction of Greenhouse Tomato Crop Evapotranspiration Using XGBoost Machine Learning Model
por: Ge, Jiankun, et al.
Publicado: (2022) -
Comparison of Growth Rate and Nutrient Content of Five Microalgae Species Cultivated in Greenhouses
por: Metsoviti, Maria N., et al.
Publicado: (2019) -
Managing diseases in greenhouse crops /
por: Jarvis, W. R.
Publicado: (1992) -
Deep Learning Based Prediction on Greenhouse Crop Yield Combined TCN and RNN
por: Gong, Liyun, et al.
Publicado: (2021)