Cargando…
RUC-Net: A Residual-Unet-Based Convolutional Neural Network for Pixel-Level Pavement Crack Segmentation
Automatic crack detection is always a challenging task due to the inherent complex backgrounds, uneven illumination, irregular patterns, and various types of noise interference. In this paper, we proposed a U-shaped encoder–decoder semantic segmentation network combining Unet and Resnet for pixel-le...
Autores principales: | Yu, Gui, Dong, Juming, Wang, Yihang, Zhou, Xinglin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824347/ https://www.ncbi.nlm.nih.gov/pubmed/36616651 http://dx.doi.org/10.3390/s23010053 |
Ejemplares similares
-
Ore image segmentation method using U-Net and Res_Unet convolutional networks
por: Liu, Xiaobo, et al.
Publicado: (2020) -
PCAT-UNet: UNet-like network fused convolution and transformer for retinal vessel segmentation
por: Chen, Danny, et al.
Publicado: (2022) -
Automatic identification of pavement cracks in public roads using an optimized deep convolutional neural network model
por: Lv, Zhihan, et al.
Publicado: (2023) -
Channel-Unet: A Spatial Channel-Wise Convolutional Neural Network for Liver and Tumors Segmentation
por: Chen, Yilong, et al.
Publicado: (2019) -
Pavement Roughness Grade Recognition Based on One-dimensional Residual Convolutional Neural Network
por: Xu, Juncai, et al.
Publicado: (2023)