Cargando…
An Anomaly Intrusion Detection for High-Density Internet of Things Wireless Communication Network Based Deep Learning Algorithms
Telecommunication networks are growing exponentially due to their significant role in civilization and industry. As a result of this very significant role, diverse applications have been appeared, which require secured links for data transmission. However, Internet-of-Things (IoT) devices are a subs...
Autores principales: | Salman, Emad Hmood, Taher, Montadar Abas, Hammadi, Yousif I., Mahmood, Omar Abdulkareem, Muthanna, Ammar, Koucheryavy, Andrey |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824352/ https://www.ncbi.nlm.nih.gov/pubmed/36616806 http://dx.doi.org/10.3390/s23010206 |
Ejemplares similares
-
Towards Deep-Learning-Driven Intrusion Detection for the Internet of Things
por: Thamilarasu, Geethapriya, et al.
Publicado: (2019) -
Hybridized bio-inspired intrusion detection system for Internet of Things
por: Singh, Richa, et al.
Publicado: (2023) -
Wireless Sensing and Networking for the Internet of Things
por: Lin, Zihuai, et al.
Publicado: (2023) -
Intrusion Detection Model for Industrial Internet of Things Based on Improved Autoencoder
por: Zhang, Wumei, et al.
Publicado: (2022) -
An Ensemble-Based Multiclass Classifier for Intrusion Detection Using Internet of Things
por: Rani, Deepti, et al.
Publicado: (2022)