Cargando…
An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and ro...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824382/ https://www.ncbi.nlm.nih.gov/pubmed/36616151 http://dx.doi.org/10.3390/plants12010022 |
_version_ | 1784866396106129408 |
---|---|
author | Gevrenova, Reneta Zengin, Gokhan Sinan, Kouadio Ibrahime Zheleva-Dimitrova, Dimitrina Balabanova, Vessela Kolmayer, Maxime Voynikov, Yulian Joubert, Olivier |
author_facet | Gevrenova, Reneta Zengin, Gokhan Sinan, Kouadio Ibrahime Zheleva-Dimitrova, Dimitrina Balabanova, Vessela Kolmayer, Maxime Voynikov, Yulian Joubert, Olivier |
author_sort | Gevrenova, Reneta |
collection | PubMed |
description | Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties. |
format | Online Article Text |
id | pubmed-9824382 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98243822023-01-08 An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) Gevrenova, Reneta Zengin, Gokhan Sinan, Kouadio Ibrahime Zheleva-Dimitrova, Dimitrina Balabanova, Vessela Kolmayer, Maxime Voynikov, Yulian Joubert, Olivier Plants (Basel) Article Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties. MDPI 2022-12-20 /pmc/articles/PMC9824382/ /pubmed/36616151 http://dx.doi.org/10.3390/plants12010022 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Gevrenova, Reneta Zengin, Gokhan Sinan, Kouadio Ibrahime Zheleva-Dimitrova, Dimitrina Balabanova, Vessela Kolmayer, Maxime Voynikov, Yulian Joubert, Olivier An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title | An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title_full | An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title_fullStr | An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title_full_unstemmed | An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title_short | An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) |
title_sort | in-depth study of metabolite profile and biological potential of tanacetum balsamita l. (costmary) |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824382/ https://www.ncbi.nlm.nih.gov/pubmed/36616151 http://dx.doi.org/10.3390/plants12010022 |
work_keys_str_mv | AT gevrenovareneta anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT zengingokhan anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT sinankouadioibrahime anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT zhelevadimitrovadimitrina anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT balabanovavessela anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT kolmayermaxime anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT voynikovyulian anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT joubertolivier anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT gevrenovareneta indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT zengingokhan indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT sinankouadioibrahime indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT zhelevadimitrovadimitrina indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT balabanovavessela indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT kolmayermaxime indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT voynikovyulian indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary AT joubertolivier indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary |