Cargando…

An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)

Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and ro...

Descripción completa

Detalles Bibliográficos
Autores principales: Gevrenova, Reneta, Zengin, Gokhan, Sinan, Kouadio Ibrahime, Zheleva-Dimitrova, Dimitrina, Balabanova, Vessela, Kolmayer, Maxime, Voynikov, Yulian, Joubert, Olivier
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824382/
https://www.ncbi.nlm.nih.gov/pubmed/36616151
http://dx.doi.org/10.3390/plants12010022
_version_ 1784866396106129408
author Gevrenova, Reneta
Zengin, Gokhan
Sinan, Kouadio Ibrahime
Zheleva-Dimitrova, Dimitrina
Balabanova, Vessela
Kolmayer, Maxime
Voynikov, Yulian
Joubert, Olivier
author_facet Gevrenova, Reneta
Zengin, Gokhan
Sinan, Kouadio Ibrahime
Zheleva-Dimitrova, Dimitrina
Balabanova, Vessela
Kolmayer, Maxime
Voynikov, Yulian
Joubert, Olivier
author_sort Gevrenova, Reneta
collection PubMed
description Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties.
format Online
Article
Text
id pubmed-9824382
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98243822023-01-08 An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary) Gevrenova, Reneta Zengin, Gokhan Sinan, Kouadio Ibrahime Zheleva-Dimitrova, Dimitrina Balabanova, Vessela Kolmayer, Maxime Voynikov, Yulian Joubert, Olivier Plants (Basel) Article Asteraceae species Tanacetum balsamita L. (costmary) is renowned for its traditional usage as an aromatic, carminative and tonic plant. This work aimed at in-depth study of the phytochemical and in vitro biological profilings of methanol–aqueous extracts from the costmary leaves, flower heads and roots. An UHPLC-HRMS analysis revealed more than 100 secondary metabolites including 24 acylquinic acids, 43 flavonoid glycosides, aglycones and methoxylated derivatives together with 15 phenolic acids glycosides. For the first time, 91 compounds are reported in the costmary. The flower heads extract possessing the highest content of total phenolics and flavonoids, actively scavenged DPPH (84.54 ± 3.35 mgTE/g) and ABTS radicals (96.35 ± 2.22 mgTE/g), and showed the highest reducing potential (151.20 and 93.22 mg TE/g for CUPRAC and FRAP, respectively). The leaves extract exhibited the highest inhibition towards acetyl- and butyrylcholinesterase (2.11 and 2.43 mg GALAE/g, respectively) and tyrosinase (54.65 mg KAE/g). The root extract inhibited α-glucosidase (0.71 ± 0.07 mmol ACAE/g), α-amylase (0.43 ± 0.02 mmol ACAE/g) and lipase (8.15 ± 1.00 mg OE/g). At a concentration >2 µg/mL, a significant dose dependent reduction of cell viability towards THP-1 monocyte leukemic cells was observed. Costmary could be recommended for raw material production with antioxidant and enzyme inhibitory properties. MDPI 2022-12-20 /pmc/articles/PMC9824382/ /pubmed/36616151 http://dx.doi.org/10.3390/plants12010022 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Gevrenova, Reneta
Zengin, Gokhan
Sinan, Kouadio Ibrahime
Zheleva-Dimitrova, Dimitrina
Balabanova, Vessela
Kolmayer, Maxime
Voynikov, Yulian
Joubert, Olivier
An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title_full An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title_fullStr An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title_full_unstemmed An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title_short An In-Depth Study of Metabolite Profile and Biological Potential of Tanacetum balsamita L. (Costmary)
title_sort in-depth study of metabolite profile and biological potential of tanacetum balsamita l. (costmary)
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824382/
https://www.ncbi.nlm.nih.gov/pubmed/36616151
http://dx.doi.org/10.3390/plants12010022
work_keys_str_mv AT gevrenovareneta anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT zengingokhan anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT sinankouadioibrahime anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT zhelevadimitrovadimitrina anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT balabanovavessela anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT kolmayermaxime anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT voynikovyulian anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT joubertolivier anindepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT gevrenovareneta indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT zengingokhan indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT sinankouadioibrahime indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT zhelevadimitrovadimitrina indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT balabanovavessela indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT kolmayermaxime indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT voynikovyulian indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary
AT joubertolivier indepthstudyofmetaboliteprofileandbiologicalpotentialoftanacetumbalsamitalcostmary