Cargando…

An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles

The marine environment presents a unique set of challenges for human–robot interaction. Communicating with gestures is a common way for interacting between the diver and autonomous underwater vehicles (AUVs). However, underwater gesture recognition is a challenging visual task for AUVs due to light...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yongji, Jiang, Yu, Qi, Hong, Zhao, Minghao, Wang, Yuehang, Wang, Kai, Wei, Fenglin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824386/
https://www.ncbi.nlm.nih.gov/pubmed/36616794
http://dx.doi.org/10.3390/s23010197
_version_ 1784866397107519488
author Zhang, Yongji
Jiang, Yu
Qi, Hong
Zhao, Minghao
Wang, Yuehang
Wang, Kai
Wei, Fenglin
author_facet Zhang, Yongji
Jiang, Yu
Qi, Hong
Zhao, Minghao
Wang, Yuehang
Wang, Kai
Wei, Fenglin
author_sort Zhang, Yongji
collection PubMed
description The marine environment presents a unique set of challenges for human–robot interaction. Communicating with gestures is a common way for interacting between the diver and autonomous underwater vehicles (AUVs). However, underwater gesture recognition is a challenging visual task for AUVs due to light refraction and wavelength color attenuation issues. Current gesture recognition methods classify the whole image directly or locate the hand position first and then classify the hand features. Among these purely visual approaches, textual information is largely ignored. This paper proposes a visual–textual model for underwater hand gesture recognition (VT-UHGR). The VT-UHGR model encodes the underwater diver’s image as visual features, the category text as textual features, and generates visual–textual features through multimodal interactions. We guide AUVs to use image–text matching for learning and inference. The proposed method achieves better performance than most existing purely visual methods on the dataset CADDY, demonstrating the effectiveness of using textual patterns for underwater gesture recognition.
format Online
Article
Text
id pubmed-9824386
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher MDPI
record_format MEDLINE/PubMed
spelling pubmed-98243862023-01-08 An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles Zhang, Yongji Jiang, Yu Qi, Hong Zhao, Minghao Wang, Yuehang Wang, Kai Wei, Fenglin Sensors (Basel) Article The marine environment presents a unique set of challenges for human–robot interaction. Communicating with gestures is a common way for interacting between the diver and autonomous underwater vehicles (AUVs). However, underwater gesture recognition is a challenging visual task for AUVs due to light refraction and wavelength color attenuation issues. Current gesture recognition methods classify the whole image directly or locate the hand position first and then classify the hand features. Among these purely visual approaches, textual information is largely ignored. This paper proposes a visual–textual model for underwater hand gesture recognition (VT-UHGR). The VT-UHGR model encodes the underwater diver’s image as visual features, the category text as textual features, and generates visual–textual features through multimodal interactions. We guide AUVs to use image–text matching for learning and inference. The proposed method achieves better performance than most existing purely visual methods on the dataset CADDY, demonstrating the effectiveness of using textual patterns for underwater gesture recognition. MDPI 2022-12-24 /pmc/articles/PMC9824386/ /pubmed/36616794 http://dx.doi.org/10.3390/s23010197 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
spellingShingle Article
Zhang, Yongji
Jiang, Yu
Qi, Hong
Zhao, Minghao
Wang, Yuehang
Wang, Kai
Wei, Fenglin
An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title_full An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title_fullStr An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title_full_unstemmed An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title_short An Underwater Human–Robot Interaction Using a Visual–Textual Model for Autonomous Underwater Vehicles
title_sort underwater human–robot interaction using a visual–textual model for autonomous underwater vehicles
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824386/
https://www.ncbi.nlm.nih.gov/pubmed/36616794
http://dx.doi.org/10.3390/s23010197
work_keys_str_mv AT zhangyongji anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT jiangyu anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT qihong anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT zhaominghao anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT wangyuehang anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT wangkai anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT weifenglin anunderwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT zhangyongji underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT jiangyu underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT qihong underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT zhaominghao underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT wangyuehang underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT wangkai underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles
AT weifenglin underwaterhumanrobotinteractionusingavisualtextualmodelforautonomousunderwatervehicles