Cargando…
Development of Sulfur-Doped Graphitic Carbon Nitride for Hydrogen Evolution under Visible-Light Irradiation
Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C(3)N(4) photocatalyst through simultaneous pyrolysis of urea (main g-C(3)N(4) precursor) and ammonium...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824438/ https://www.ncbi.nlm.nih.gov/pubmed/36615972 http://dx.doi.org/10.3390/nano13010062 |
Sumario: | Developing eco-friendly strategies to produce green fuel has attracted continuous and extensive attention. In this study, a novel gas-templating method was developed to prepare 2D porous S-doped g-C(3)N(4) photocatalyst through simultaneous pyrolysis of urea (main g-C(3)N(4) precursor) and ammonium sulfate (sulfur source and structure promoter). Different content of ammonium sulfate was examined to find the optimal synthesis conditions and to investigate the property-governed activity. The physicochemical properties of the obtained photocatalysts were analyzed by X-ray diffraction (XRD), field emission-scanning electron microscopy (FE-SEM), scanning transmission electron microscopy (STEM), specific surface area (BET) measurement, ultraviolet-visible light diffuse reflectance spectroscopy (UV/vis DRS), X-ray photoelectron spectroscopy (XPS), photoluminescence (PL) spectroscopy and reversed double-beam photo-acoustic spectroscopy (RDB-PAS). The as-prepared S-doped g-C(3)N(4) photocatalysts were applied for photocatalytic H(2) evolution under vis irradiation. The condition-dependent activity was probed to achieve the best photocatalytic performance. It was demonstrated that ammonium sulfate played a crucial role to achieve concurrently 2D morphology, controlled nanostructure, and S-doping of g-C(3)N(4) in a one-pot process. The 2D nanoporous S-doped g-C(3)N(4) of crumpled lamellar-like structure with large specific surface area (73.8 m(2) g(−1)) and improved electron−hole separation showed a remarkable H(2) generation rate, which was almost one order in magnitude higher than that of pristine g-C(3)N(4). It has been found that though all properties are crucial for the overall photocatalytic performance, efficient doping is probably a key factor for high photocatalytic activity. Moreover, the photocatalysts exhibit significant stability during recycling. Accordingly, a significant potential of S-doped g-C(3)N(4) has been revealed for practical use under natural solar radiation. |
---|