Cargando…
Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition
Human gait recognition is one of the most interesting issues within the subject of behavioral biometrics. The most significant problems connected with the practical application of biometric systems include their accuracy as well as the speed at which they operate, understood both as the time needed...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824449/ https://www.ncbi.nlm.nih.gov/pubmed/36617105 http://dx.doi.org/10.3390/s23010508 |
_version_ | 1784866412613861376 |
---|---|
author | Derlatka, Marcin Borowska, Marta |
author_facet | Derlatka, Marcin Borowska, Marta |
author_sort | Derlatka, Marcin |
collection | PubMed |
description | Human gait recognition is one of the most interesting issues within the subject of behavioral biometrics. The most significant problems connected with the practical application of biometric systems include their accuracy as well as the speed at which they operate, understood both as the time needed to recognize a particular person as well as the time necessary to create and train a biometric system. The present study made use of an ensemble of heterogeneous base classifiers to address these issues. A Heterogeneous ensemble is a group of classification models trained using various algorithms and combined to output an effective recognition A group of parameters identified on the basis of ground reaction forces was accepted as input signals. The proposed solution was tested on a sample of 322 people (5980 gait cycles). Results concerning the accuracy of recognition (meaning the Correct Classification Rate quality at 99.65%), as well as operation time (meaning the time of model construction at <12.5 min and the time needed to recognize a person at <0.1 s), should be considered as very good and exceed in quality other methods so far described in the literature. |
format | Online Article Text |
id | pubmed-9824449 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98244492023-01-08 Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition Derlatka, Marcin Borowska, Marta Sensors (Basel) Article Human gait recognition is one of the most interesting issues within the subject of behavioral biometrics. The most significant problems connected with the practical application of biometric systems include their accuracy as well as the speed at which they operate, understood both as the time needed to recognize a particular person as well as the time necessary to create and train a biometric system. The present study made use of an ensemble of heterogeneous base classifiers to address these issues. A Heterogeneous ensemble is a group of classification models trained using various algorithms and combined to output an effective recognition A group of parameters identified on the basis of ground reaction forces was accepted as input signals. The proposed solution was tested on a sample of 322 people (5980 gait cycles). Results concerning the accuracy of recognition (meaning the Correct Classification Rate quality at 99.65%), as well as operation time (meaning the time of model construction at <12.5 min and the time needed to recognize a person at <0.1 s), should be considered as very good and exceed in quality other methods so far described in the literature. MDPI 2023-01-02 /pmc/articles/PMC9824449/ /pubmed/36617105 http://dx.doi.org/10.3390/s23010508 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Derlatka, Marcin Borowska, Marta Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title | Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title_full | Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title_fullStr | Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title_full_unstemmed | Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title_short | Ensemble of Heterogeneous Base Classifiers for Human Gait Recognition |
title_sort | ensemble of heterogeneous base classifiers for human gait recognition |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824449/ https://www.ncbi.nlm.nih.gov/pubmed/36617105 http://dx.doi.org/10.3390/s23010508 |
work_keys_str_mv | AT derlatkamarcin ensembleofheterogeneousbaseclassifiersforhumangaitrecognition AT borowskamarta ensembleofheterogeneousbaseclassifiersforhumangaitrecognition |