Cargando…

A Comprehensive Experimental Emulation for OTFS Waveform RF-Impairments

The orthogonal time-frequency space (OTFS) waveform exceeds the challenges that face orthogonal frequency division multiplexing (OFDM) in a high-mobility environment with high time-frequency dispersive channels. Since radio frequency (RF) impairments have a direct impact on waveform behavior, this p...

Descripción completa

Detalles Bibliográficos
Autores principales: Abushattal, Abdelrahman, Zegrar, Salah Eddine, Yazgan, Ayhan, Arslan, Hüseyin
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824501/
https://www.ncbi.nlm.nih.gov/pubmed/36616636
http://dx.doi.org/10.3390/s23010038
Descripción
Sumario:The orthogonal time-frequency space (OTFS) waveform exceeds the challenges that face orthogonal frequency division multiplexing (OFDM) in a high-mobility environment with high time-frequency dispersive channels. Since radio frequency (RF) impairments have a direct impact on waveform behavior, this paper investigates the experimental implementation of RF-impairments that affect OTFS waveform performance and compares them to the OFDM waveform as a benchmark. Firstly, the doubly-dispersive channel effect is analyzed, and then an experimental framework is established for investigating the impact of RF-impairments, including non-linearity, carrier frequency offset (CFO), I/Q imbalances, DC-offset, and phase noise are considered. The experiments were conducted in a real indoor wireless environment using software-defined radio (SDR) at carrier frequencies of [Formula: see text] GHz and 5 GHz based on the Keysight EXG X-Series devices. The comparison of the performances of OFDM and OTFS in the presence of RF-impairments reveals that OTFS significantly outperforms OFDM.