Cargando…
Conv-Former: A Novel Network Combining Convolution and Self-Attention for Image Quality Assessment
To address the challenge of no-reference image quality assessment (NR-IQA) for authentically and synthetically distorted images, we propose a novel network called the Combining Convolution and Self-Attention for Image Quality Assessment network (Conv-Former). Our model uses a multi-stage transformer...
Autores principales: | Han, Lintao, Lv, Hengyi, Zhao, Yuchen, Liu, Hailong, Bi, Guoling, Yin, Zhiyong, Fang, Yuqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824537/ https://www.ncbi.nlm.nih.gov/pubmed/36617024 http://dx.doi.org/10.3390/s23010427 |
Ejemplares similares
-
OMNI-CONV: Generalization of the Omnidirectional Distortion-Aware Convolutions
por: Artizzu, Charles-Olivier, et al.
Publicado: (2023) -
A novel residual block: replace Conv1× 1 with Conv3×3 and stack more convolutions
por: Hu, XiuJian, et al.
Publicado: (2023) -
Event-Guided Image Super-Resolution Reconstruction
por: Guo, Guangsha, et al.
Publicado: (2023) -
Denoising Method Based on Salient Region Recognition for the Spatiotemporal Event Stream
por: Tang, Sichao, et al.
Publicado: (2023) -
Event-Based Optical Flow Estimation with Spatio-Temporal Backpropagation Trained Spiking Neural Network
por: Zhang, Yisa, et al.
Publicado: (2023)