Cargando…
Real-Time Remaining Useful Life Prediction of Cutting Tools Using Sparse Augmented Lagrangian Analysis and Gaussian Process Regression
Remaining useful life (RUL) of cutting tools is concerned with cutting tool operational status prediction and damage prognosis. Most RUL prediction methods utilized different features collected from different sensors to predict the life of the tool. To increase the prediction accuracy, it is often n...
Autores principales: | Qin, Xiao, Huang, Weizhi, Wang, Xuefei, Tang, Zezhi, Liu, Zepeng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824545/ https://www.ncbi.nlm.nih.gov/pubmed/36617013 http://dx.doi.org/10.3390/s23010413 |
Ejemplares similares
-
Correlated product of experts for sparse Gaussian process regression
por: Schürch, Manuel, et al.
Publicado: (2023) -
Heteroscedastic sparse Gaussian process regression-based stochastic material model for plastic structural analysis
por: Chen, Baixi, et al.
Publicado: (2022) -
An algorithm for separation of mixed sparse and Gaussian sources
por: Akkalkotkar, Ameya, et al.
Publicado: (2017) -
Uncertainty Estimation of the Dose Rate in Real-Time Applications Using Gaussian Process Regression
por: Kim, Jinhwan, et al.
Publicado: (2020) -
Regression with Gaussian Processes
por: Kalia, Saarik
Publicado: (2016)