Cargando…
Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks
Fused deposition modeling (FDM) is a form of additive manufacturing where three-dimensional (3D) models are created by depositing melted thermoplastic polymer filaments in layers. Although FDM is a mature process, defects can occur during printing. Therefore, an image-based quality inspection method...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824655/ https://www.ncbi.nlm.nih.gov/pubmed/36617085 http://dx.doi.org/10.3390/s23010491 |
_version_ | 1784866463489720320 |
---|---|
author | Yang, Cheng-Jung Huang, Wei-Kai Lin, Keng-Pei |
author_facet | Yang, Cheng-Jung Huang, Wei-Kai Lin, Keng-Pei |
author_sort | Yang, Cheng-Jung |
collection | PubMed |
description | Fused deposition modeling (FDM) is a form of additive manufacturing where three-dimensional (3D) models are created by depositing melted thermoplastic polymer filaments in layers. Although FDM is a mature process, defects can occur during printing. Therefore, an image-based quality inspection method for 3D-printed objects of varying geometries was developed in this study. Transfer learning with pretrained models, which were used as feature extractors, was combined with ensemble learning, and the resulting model combinations were used to inspect the quality of FDM-printed objects. Model combinations with VGG16 and VGG19 had the highest accuracy in most situations. Furthermore, the classification accuracies of these model combinations were not significantly affected by differences in color. In summary, the combination of transfer learning with ensemble learning is an effective method for inspecting the quality of 3D-printed objects. It reduces time and material wastage and improves 3D printing quality. |
format | Online Article Text |
id | pubmed-9824655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2023 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98246552023-01-08 Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks Yang, Cheng-Jung Huang, Wei-Kai Lin, Keng-Pei Sensors (Basel) Article Fused deposition modeling (FDM) is a form of additive manufacturing where three-dimensional (3D) models are created by depositing melted thermoplastic polymer filaments in layers. Although FDM is a mature process, defects can occur during printing. Therefore, an image-based quality inspection method for 3D-printed objects of varying geometries was developed in this study. Transfer learning with pretrained models, which were used as feature extractors, was combined with ensemble learning, and the resulting model combinations were used to inspect the quality of FDM-printed objects. Model combinations with VGG16 and VGG19 had the highest accuracy in most situations. Furthermore, the classification accuracies of these model combinations were not significantly affected by differences in color. In summary, the combination of transfer learning with ensemble learning is an effective method for inspecting the quality of 3D-printed objects. It reduces time and material wastage and improves 3D printing quality. MDPI 2023-01-02 /pmc/articles/PMC9824655/ /pubmed/36617085 http://dx.doi.org/10.3390/s23010491 Text en © 2023 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Yang, Cheng-Jung Huang, Wei-Kai Lin, Keng-Pei Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title | Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title_full | Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title_fullStr | Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title_full_unstemmed | Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title_short | Three-Dimensional Printing Quality Inspection Based on Transfer Learning with Convolutional Neural Networks |
title_sort | three-dimensional printing quality inspection based on transfer learning with convolutional neural networks |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824655/ https://www.ncbi.nlm.nih.gov/pubmed/36617085 http://dx.doi.org/10.3390/s23010491 |
work_keys_str_mv | AT yangchengjung threedimensionalprintingqualityinspectionbasedontransferlearningwithconvolutionalneuralnetworks AT huangweikai threedimensionalprintingqualityinspectionbasedontransferlearningwithconvolutionalneuralnetworks AT linkengpei threedimensionalprintingqualityinspectionbasedontransferlearningwithconvolutionalneuralnetworks |