Cargando…
A Comprehensive Predictive-Learning Framework for Optimal Scheduling and Control of Smart Home Appliances Based on User and Appliance Classification
Energy consumption is increasing daily, and with that comes a continuous increase in energy costs. Predicting future energy consumption and building an effective energy management system for smart homes has become essential for many industrialists to solve the problem of energy wastage. Machine lear...
Autores principales: | Shafqat, Wafa, Lee, Kyu-Tae, Kim, Do-Hyeun |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824666/ https://www.ncbi.nlm.nih.gov/pubmed/36616725 http://dx.doi.org/10.3390/s23010127 |
Ejemplares similares
-
Load Balancing Integrated Least Slack Time-Based Appliance Scheduling for Smart Home Energy Management
por: Silva, Bhagya Nathali, et al.
Publicado: (2018) -
An Appliance Scheduling System for Residential Energy Management
por: Apaydin-Özkan, Hanife
Publicado: (2021) -
Data privacy and smart home energy appliances: A stated choice experiment
por: Du, Hua, et al.
Publicado: (2023) -
Embedded Systems for Smart Appliances and Energy Management
por: Grimm, Christoph, et al.
Publicado: (2013) -
Energy Prediction and Optimization for Smart Homes with Weather Metric-Weight Coefficients
por: Mehmood, Asif, et al.
Publicado: (2023)