Cargando…
A Deep Learning Based Data Recovery Approach for Missing and Erroneous Data of IoT Nodes
Internet of things (IoT) nodes are deployed in large-scale automated monitoring applications to capture the massive amount of data from various locations in a time-series manner. The captured data are affected due to several factors such as device malfunctioning, unstable communication, environmenta...
Autores principales: | Vedavalli, Perigisetty, Ch, Deepak |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824676/ https://www.ncbi.nlm.nih.gov/pubmed/36616766 http://dx.doi.org/10.3390/s23010170 |
Ejemplares similares
-
An Approach towards Increasing Prediction Accuracy for the Recovery of Missing IoT Data based on the GRNN-SGTM Ensemble †
por: Tkachenko, Roman, et al.
Publicado: (2020) -
Machine learning and deep learning approaches in IoT
por: Javed, Abqa, et al.
Publicado: (2023) -
Blockchain-Based Deep Learning to Process IoT Data Acquisition in Cognitive Data
por: Hannah, S., et al.
Publicado: (2022) -
A data-driven approach to increasing the lifetime of IoT sensor nodes
por: Suryavansh, Shikhar, et al.
Publicado: (2021) -
The Deep Learning Solutions on Lossless Compression Methods for Alleviating Data Load on IoT Nodes in Smart Cities
por: Nasif, Ammar, et al.
Publicado: (2021)