Cargando…
An Imbalanced Generative Adversarial Network-Based Approach for Network Intrusion Detection in an Imbalanced Dataset
In modern networks, a Network Intrusion Detection System (NIDS) is a critical security device for detecting unauthorized activity. The categorization effectiveness for minority classes is limited by the imbalanced class issues connected with the dataset. We propose an Imbalanced Generative Adversari...
Autores principales: | Rao, Yamarthi Narasimha, Suresh Babu, Kunda |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824750/ https://www.ncbi.nlm.nih.gov/pubmed/36617148 http://dx.doi.org/10.3390/s23010550 |
Ejemplares similares
-
Generative Adversarial Network-Based Fault Detection in Semiconductor Equipment with Class-Imbalanced Data
por: Choi, Jeong Eun, et al.
Publicado: (2023) -
A Few-Shot Learning-Based Siamese Capsule Network for Intrusion Detection with Imbalanced Training Data
por: Wang, Zu-Min, et al.
Publicado: (2021) -
An Effective LSTM Recurrent Network to Detect Arrhythmia on Imbalanced ECG Dataset
por: Gao, Junli, et al.
Publicado: (2019) -
Fault Diagnosis Method for Imbalanced Data Based on Multi-Signal Fusion and Improved Deep Convolution Generative Adversarial Network
por: Deng, Congying, et al.
Publicado: (2023) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018)