Cargando…
An AI-Inspired Spatio-Temporal Neural Network for EEG-Based Emotional Status
The accurate identification of the human emotional status is crucial for an efficient human–robot interaction (HRI). As such, we have witnessed extensive research efforts made in developing robust and accurate brain–computer interfacing models based on diverse biosignals. In particular, previous res...
Autores principales: | Alotaibi, Fahad Mazaed, , Fawad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824756/ https://www.ncbi.nlm.nih.gov/pubmed/36617098 http://dx.doi.org/10.3390/s23010498 |
Ejemplares similares
-
A Hybrid Hand-Crafted and Deep Neural Spatio-Temporal EEG Features Clustering Framework for Precise Emotional Status Recognition
por: Haq, Qazi Mazhar ul, et al.
Publicado: (2022) -
AI inspired EEG-based spatial feature selection method using multivariate empirical mode decomposition for emotion classification
por: Asghar, Muhammad Adeel, et al.
Publicado: (2021) -
The spatio-temporal mapping of epileptic networks: Combination of EEG–fMRI and EEG source imaging
por: Vulliemoz, S., et al.
Publicado: (2009) -
Spatio-Temporal Representation of an Electoencephalogram for Emotion Recognition Using a Three-Dimensional Convolutional Neural Network
por: Cho, Jungchan, et al.
Publicado: (2020) -
EEG-based spatio-temporal relation signatures for the diagnosis of depression and schizophrenia
por: Shor, Oded, et al.
Publicado: (2023)