Cargando…

Modeling of Optimized Lattice Mismatch by Carbon-Dioxide Laser Annealing on (In, Ga) Co-Doped ZnO Multi-Deposition Thin Films Introducing Designed Bottom Layers

In this study, modeling of optimized lattice mismatch by carbon-dioxide annealing on (In, Ga) co-doped ZnO multi-deposition thin films was investigated with crystallography and optical analysis. (In, Ga) co-doped ZnO multi-deposition thin films with various types of bottom layers were fabricated on...

Descripción completa

Detalles Bibliográficos
Autores principales: Yun, Jaeyong, Bae, Min-Sung, Baek, Jin Su, Kim, Tae Wan, Kim, Sung-Jin, Koh, Jung-Hyuk
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824762/
https://www.ncbi.nlm.nih.gov/pubmed/36615956
http://dx.doi.org/10.3390/nano13010045
Descripción
Sumario:In this study, modeling of optimized lattice mismatch by carbon-dioxide annealing on (In, Ga) co-doped ZnO multi-deposition thin films was investigated with crystallography and optical analysis. (In, Ga) co-doped ZnO multi-deposition thin films with various types of bottom layers were fabricated on sapphire substrates by solution synthesis, the spin coating process, and carbon-dioxide laser irradiation with post annealing. (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer showed the lowest mismatch ratio between the substrate and the bottom layer of the film. The carbon-dioxide laser annealing process can improve electrical properties by reducing lattice mismatch. After applying the carbon-dioxide laser annealing process to the (In, Ga) co-doped ZnO multi-deposition thin films with Ga-doped ZnO as the bottom layer, an optimized sheet resistance of 34.5 kΩ/sq and a high transparency rate of nearly 90% in the visible light wavelength region were obtained.