Cargando…

Physiotherapy Exercise Classification with Single-Camera Pose Detection and Machine Learning

Access to healthcare, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure participation. The aim of this study was to develop and evaluate the potential for performing auto...

Descripción completa

Detalles Bibliográficos
Autores principales: Arrowsmith, Colin, Burns, David, Mak, Thomas, Hardisty, Michael, Whyne, Cari
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824820/
https://www.ncbi.nlm.nih.gov/pubmed/36616961
http://dx.doi.org/10.3390/s23010363
Descripción
Sumario:Access to healthcare, including physiotherapy, is increasingly occurring through virtual formats. At-home adherence to physical therapy programs is often poor and few tools exist to objectively measure participation. The aim of this study was to develop and evaluate the potential for performing automatic, unsupervised video-based monitoring of at-home low-back and shoulder physiotherapy exercises using a mobile phone camera. Joint locations were extracted from the videos of healthy subjects performing low-back and shoulder physiotherapy exercises using an open source pose detection framework. A convolutional neural network was trained to classify physiotherapy exercises based on the segments of keypoint time series data. The model’s performance as a function of input keypoint combinations was studied in addition to its robustness to variation in the camera angle. The CNN model achieved optimal performance using a total of 12 pose estimation landmarks from the upper and lower body (low-back exercise classification: 0.995 ± 0.009; shoulder exercise classification: 0.963 ± 0.020). Training the CNN on a variety of angles was found to be effective in making the model robust to variations in video filming angle. This study demonstrates the feasibility of using a smartphone camera and a supervised machine learning model to effectively classify at-home physiotherapy participation and could provide a low-cost, scalable method for tracking adherence to physical therapy exercise programs in a variety of settings.