Cargando…
Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing
Lock-in thermal tests (LTTs) are one of the best ways to detect defects in composite materials. The parameter that most affects their performance is the cycle period of the stimulation wave. Its influence on the amplitude-phase results was determined by performing various numeric simulations and lab...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824877/ https://www.ncbi.nlm.nih.gov/pubmed/36616930 http://dx.doi.org/10.3390/s23010325 |
_version_ | 1784866518068101120 |
---|---|
author | Ramos Silva, António Vaz, Mário Leite, Sofia Mendes, Joaquim |
author_facet | Ramos Silva, António Vaz, Mário Leite, Sofia Mendes, Joaquim |
author_sort | Ramos Silva, António |
collection | PubMed |
description | Lock-in thermal tests (LTTs) are one of the best ways to detect defects in composite materials. The parameter that most affects their performance is the cycle period of the stimulation wave. Its influence on the amplitude-phase results was determined by performing various numeric simulations and laboratory tests. The laboratory tests were used to infer part of the simulation parameters, namely the input and output heat, corresponding to the stimulation and natural convection. The simulations and the analysis of their results focus on the heat flow inside the sample and the manner they change for different geometries. This was performed for poly(methyl methacrylate (PMMA) and carbon fiber-reinforced polymers (CFRPs). The simulation of these materials was also used to create prediction surfaces and equations. These predict the amplitude and phase for a sample with a thickness l and a cycle period. These new findings were validated with new laboratory tests and two new samples. These validated the prediction surfaces and equations and can now be used as a reference for future works and industrial applications. |
format | Online Article Text |
id | pubmed-9824877 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-98248772023-01-08 Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing Ramos Silva, António Vaz, Mário Leite, Sofia Mendes, Joaquim Sensors (Basel) Article Lock-in thermal tests (LTTs) are one of the best ways to detect defects in composite materials. The parameter that most affects their performance is the cycle period of the stimulation wave. Its influence on the amplitude-phase results was determined by performing various numeric simulations and laboratory tests. The laboratory tests were used to infer part of the simulation parameters, namely the input and output heat, corresponding to the stimulation and natural convection. The simulations and the analysis of their results focus on the heat flow inside the sample and the manner they change for different geometries. This was performed for poly(methyl methacrylate (PMMA) and carbon fiber-reinforced polymers (CFRPs). The simulation of these materials was also used to create prediction surfaces and equations. These predict the amplitude and phase for a sample with a thickness l and a cycle period. These new findings were validated with new laboratory tests and two new samples. These validated the prediction surfaces and equations and can now be used as a reference for future works and industrial applications. MDPI 2022-12-28 /pmc/articles/PMC9824877/ /pubmed/36616930 http://dx.doi.org/10.3390/s23010325 Text en © 2022 by the authors. https://creativecommons.org/licenses/by/4.0/Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Ramos Silva, António Vaz, Mário Leite, Sofia Mendes, Joaquim Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title | Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title_full | Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title_fullStr | Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title_full_unstemmed | Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title_short | Lock-In Thermal Test Simulation, Influence, and Optimum Cycle Period for Infrared Thermal Testing in Non-Destructive Testing |
title_sort | lock-in thermal test simulation, influence, and optimum cycle period for infrared thermal testing in non-destructive testing |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824877/ https://www.ncbi.nlm.nih.gov/pubmed/36616930 http://dx.doi.org/10.3390/s23010325 |
work_keys_str_mv | AT ramossilvaantonio lockinthermaltestsimulationinfluenceandoptimumcycleperiodforinfraredthermaltestinginnondestructivetesting AT vazmario lockinthermaltestsimulationinfluenceandoptimumcycleperiodforinfraredthermaltestinginnondestructivetesting AT leitesofia lockinthermaltestsimulationinfluenceandoptimumcycleperiodforinfraredthermaltestinginnondestructivetesting AT mendesjoaquim lockinthermaltestsimulationinfluenceandoptimumcycleperiodforinfraredthermaltestinginnondestructivetesting |