Cargando…

An Improved Shape from Focus Method for Measurement of Three-Dimensional Features of Fuel Nozzles

The precise three-dimensional measurement of fuel nozzles is of great significance to assess the manufacturing accuracy and improve the spray and atomization performance. This paper proposes an improved fast shape from focus (SFF) method for three-dimensional measurement of key features of fuel nozz...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Liang, Zou, Jiahao, Zhang, Wei, Chen, Yun, Shao, Wen, Li, Yuan, Chen, Shuyuan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9824882/
https://www.ncbi.nlm.nih.gov/pubmed/36616865
http://dx.doi.org/10.3390/s23010265
Descripción
Sumario:The precise three-dimensional measurement of fuel nozzles is of great significance to assess the manufacturing accuracy and improve the spray and atomization performance. This paper proposes an improved fast shape from focus (SFF) method for three-dimensional measurement of key features of fuel nozzles. In order to ensure the measurement accuracy and efficiency of the SFF, the dispersion of the measured points from a standard flat plane was used to select the optimal combination of the focus measure operator, window size and sampling step size. In addition, an approximate method for the focus measure interval is proposed to improve the measurement efficiency, which uses the peak region of the central pixel to replace the peak region of other pixels. The results show that the proposed method decreased the average computation time of the focus measure by 79.19% for the cone section and by 38.30% for the swirl slot. Compared with a reference laser scanning microscope, the measurement error in length is within 10 μm and the error in angle is within a maximum 0.15°.