Cargando…
Estimation of marginal structural models under irregular visits and unmeasured confounder: calibrated inverse probability weights
Clinical information collected in electronic health records (EHRs) is becoming an essential source to emulate randomized experiments. Since patients do not interact with the healthcare system at random, the longitudinal information in large observational databases must account for irregular visits....
Autores principales: | Kalia, Sumeet, Saarela, Olli, Escobar, Michael, Moineddin, Rahim, Greiver, Michelle |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825036/ https://www.ncbi.nlm.nih.gov/pubmed/36611135 http://dx.doi.org/10.1186/s12874-022-01831-2 |
Ejemplares similares
-
Marginal structural models using calibrated weights with SuperLearner: application to longitudinal diabetes cohort.
por: Kalia, Sumeet, et al.
Publicado: (2022) -
Using Primary Care Clinical Text Data and Natural Language Processing to Identify Indicators of COVID-19 in Toronto, Canada
por: Meaney, Christopher, et al.
Publicado: (2022) -
Sensitivity Analysis for Unmeasured Confounding in Meta-Analyses
por: Mathur, Maya B., et al.
Publicado: (2019) -
Adjustment for unmeasured confounding through informative priors for the confounder-outcome relation
por: Groenwold, Rolf H. H., et al.
Publicado: (2018) -
Normalized Augmented Inverse Probability Weighting with Neural Network Predictions
por: Rostami, Mehdi, et al.
Publicado: (2022)