Cargando…
Large-scale prediction of activity cliffs using machine and deep learning methods of increasing complexity
Activity cliffs (AC) are formed by pairs of structural analogues that are active against the same target but have a large difference in potency. While much of our knowledge about ACs has originated from the analysis and comparison of compounds and activity data, several studies have reported AC pred...
Autores principales: | Tamura, Shunsuke, Miyao, Tomoyuki, Bajorath, Jürgen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825040/ https://www.ncbi.nlm.nih.gov/pubmed/36611204 http://dx.doi.org/10.1186/s13321-022-00676-7 |
Ejemplares similares
-
Prediction of Promiscuity Cliffs Using Machine Learning
por: Blaschke, Thomas, et al.
Publicado: (2020) -
Increasing the public activity cliff knowledge base with new categories of activity cliffs
por: Hu, Huabin, et al.
Publicado: (2020) -
Interpretation of Ligand-Based Activity Cliff Prediction Models Using the Matched Molecular Pair Kernel
por: Tamura, Shunsuke, et al.
Publicado: (2021) -
Computational method for the identification of third generation activity cliffs
por: Stumpfe, Dagmar, et al.
Publicado: (2020) -
Advancing the activity cliff concept
por: Hu, Ye, et al.
Publicado: (2013)