Cargando…
Multi-site cross-organ calibrated deep learning (MuSClD): Automated diagnosis of non-melanoma skin cancer()
Although deep learning (DL) has demonstrated impressive diagnostic performance for a variety of computational pathology tasks, this performance often markedly deteriorates on whole slide images (WSI) generated at external test sites. This phenomenon is due in part to domain shift, wherein difference...
Autores principales: | Zhou, Yufei, Koyuncu, Can, Lu, Cheng, Grobholz, Rainer, Katz, Ian, Madabhushi, Anant, Janowczyk, Andrew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825103/ https://www.ncbi.nlm.nih.gov/pubmed/36516556 http://dx.doi.org/10.1016/j.media.2022.102702 |
Ejemplares similares
-
Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases
por: Janowczyk, Andrew, et al.
Publicado: (2016) -
Automated Tubule Nuclei Quantification and Correlation with Oncotype DX risk categories in ER+ Breast Cancer Whole Slide Images
por: Romo-Bucheli, David, et al.
Publicado: (2016) -
Quantifying local heterogeneity via morphologic scale: Distinguishing tumoral from stromal regions
por: Janowczyk, Andrew, et al.
Publicado: (2013) -
Quantitative Assessment of the Effects of Compression on Deep Learning in Digital Pathology Image Analysis
por: Chen, Yijiang, et al.
Publicado: (2020) -
Update on the current opinion, status and future development of digital pathology in Switzerland in light of COVID-19
por: Koelzer, Viktor Hendrik, et al.
Publicado: (2022)