Cargando…
Target RNA-guided protease activity in type III-E CRISPR–Cas system
The type III-E CRISPR–Cas systems are newly identified adaptive immune systems in prokaryotes that use a single Cas7–11 protein to specifically cleave target RNA. Cas7–11 could associate with Csx29, a putative caspase-like protein encoded by the gene frequently found in the type III-E loci, suggesti...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825189/ https://www.ncbi.nlm.nih.gov/pubmed/36484100 http://dx.doi.org/10.1093/nar/gkac1151 |
Sumario: | The type III-E CRISPR–Cas systems are newly identified adaptive immune systems in prokaryotes that use a single Cas7–11 protein to specifically cleave target RNA. Cas7–11 could associate with Csx29, a putative caspase-like protein encoded by the gene frequently found in the type III-E loci, suggesting a functional linkage between the RNase and protease activities in type III-E systems. Here, we demonstrated that target RNA recognition would stimulate the proteolytic activity of Csx29, and protein Csx30 is the endogenous substrate. More interestingly, while the cognate target RNA recognition would activate Csx29, non-cognate target RNA with the complementary 3′ anti-tag sequence inhibits the enzymatic activity. Csx30 could bind to the sigma factor RpoE, which may initiate the stress response after proteolytic cleavage. Combined with biochemical and structural studies, we have elucidated the mechanisms underlying the target RNA-guided proteolytic activity of Csx29. Our work will guide further developments leveraging this simple RNA targeting system for RNA and protein-related applications. |
---|