Cargando…

Attentive Variational Information Bottleneck for TCR–peptide interaction prediction

MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings c...

Descripción completa

Detalles Bibliográficos
Autores principales: Grazioli, Filippo, Machart, Pierre, Mösch, Anja, Li, Kai, Castorina, Leonardo V, Pfeifer, Nico, Min, Martin Renqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/
https://www.ncbi.nlm.nih.gov/pubmed/36571499
http://dx.doi.org/10.1093/bioinformatics/btac820
Descripción
Sumario:MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.