Cargando…
Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/ https://www.ncbi.nlm.nih.gov/pubmed/36571499 http://dx.doi.org/10.1093/bioinformatics/btac820 |
Sumario: | MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
---|