Cargando…
Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings c...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/ https://www.ncbi.nlm.nih.gov/pubmed/36571499 http://dx.doi.org/10.1093/bioinformatics/btac820 |
_version_ | 1784866597202034688 |
---|---|
author | Grazioli, Filippo Machart, Pierre Mösch, Anja Li, Kai Castorina, Leonardo V Pfeifer, Nico Min, Martin Renqiang |
author_facet | Grazioli, Filippo Machart, Pierre Mösch, Anja Li, Kai Castorina, Leonardo V Pfeifer, Nico Min, Martin Renqiang |
author_sort | Grazioli, Filippo |
collection | PubMed |
description | MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. |
format | Online Article Text |
id | pubmed-9825246 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Oxford University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-98252462023-01-09 Attentive Variational Information Bottleneck for TCR–peptide interaction prediction Grazioli, Filippo Machart, Pierre Mösch, Anja Li, Kai Castorina, Leonardo V Pfeifer, Nico Min, Martin Renqiang Bioinformatics Original Paper MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-12-26 /pmc/articles/PMC9825246/ /pubmed/36571499 http://dx.doi.org/10.1093/bioinformatics/btac820 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Paper Grazioli, Filippo Machart, Pierre Mösch, Anja Li, Kai Castorina, Leonardo V Pfeifer, Nico Min, Martin Renqiang Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title | Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title_full | Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title_fullStr | Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title_full_unstemmed | Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title_short | Attentive Variational Information Bottleneck for TCR–peptide interaction prediction |
title_sort | attentive variational information bottleneck for tcr–peptide interaction prediction |
topic | Original Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/ https://www.ncbi.nlm.nih.gov/pubmed/36571499 http://dx.doi.org/10.1093/bioinformatics/btac820 |
work_keys_str_mv | AT graziolifilippo attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT machartpierre attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT moschanja attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT likai attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT castorinaleonardov attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT pfeifernico attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction AT minmartinrenqiang attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction |