Cargando…

Attentive Variational Information Bottleneck for TCR–peptide interaction prediction

MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings c...

Descripción completa

Detalles Bibliográficos
Autores principales: Grazioli, Filippo, Machart, Pierre, Mösch, Anja, Li, Kai, Castorina, Leonardo V, Pfeifer, Nico, Min, Martin Renqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/
https://www.ncbi.nlm.nih.gov/pubmed/36571499
http://dx.doi.org/10.1093/bioinformatics/btac820
_version_ 1784866597202034688
author Grazioli, Filippo
Machart, Pierre
Mösch, Anja
Li, Kai
Castorina, Leonardo V
Pfeifer, Nico
Min, Martin Renqiang
author_facet Grazioli, Filippo
Machart, Pierre
Mösch, Anja
Li, Kai
Castorina, Leonardo V
Pfeifer, Nico
Min, Martin Renqiang
author_sort Grazioli, Filippo
collection PubMed
description MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9825246
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98252462023-01-09 Attentive Variational Information Bottleneck for TCR–peptide interaction prediction Grazioli, Filippo Machart, Pierre Mösch, Anja Li, Kai Castorina, Leonardo V Pfeifer, Nico Min, Martin Renqiang Bioinformatics Original Paper MOTIVATION: We present a multi-sequence generalization of Variational Information Bottleneck and call the resulting model Attentive Variational Information Bottleneck (AVIB). Our AVIB model leverages multi-head self-attention to implicitly approximate a posterior distribution over latent encodings conditioned on multiple input sequences. We apply AVIB to a fundamental immuno-oncology problem: predicting the interactions between T-cell receptors (TCRs) and peptides. RESULTS: Experimental results on various datasets show that AVIB significantly outperforms state-of-the-art methods for TCR–peptide interaction prediction. Additionally, we show that the latent posterior distribution learned by AVIB is particularly effective for the unsupervised detection of out-of-distribution amino acid sequences. AVAILABILITY AND IMPLEMENTATION: The code and the data used for this study are publicly available at: https://github.com/nec-research/vibtcr. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-12-26 /pmc/articles/PMC9825246/ /pubmed/36571499 http://dx.doi.org/10.1093/bioinformatics/btac820 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Paper
Grazioli, Filippo
Machart, Pierre
Mösch, Anja
Li, Kai
Castorina, Leonardo V
Pfeifer, Nico
Min, Martin Renqiang
Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title_full Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title_fullStr Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title_full_unstemmed Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title_short Attentive Variational Information Bottleneck for TCR–peptide interaction prediction
title_sort attentive variational information bottleneck for tcr–peptide interaction prediction
topic Original Paper
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825246/
https://www.ncbi.nlm.nih.gov/pubmed/36571499
http://dx.doi.org/10.1093/bioinformatics/btac820
work_keys_str_mv AT graziolifilippo attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT machartpierre attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT moschanja attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT likai attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT castorinaleonardov attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT pfeifernico attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction
AT minmartinrenqiang attentivevariationalinformationbottleneckfortcrpeptideinteractionprediction