Cargando…
SIMBSIG: similarity search and clustering for biobank-scale data
SUMMARY: In many modern bioinformatics applications, such as statistical genetics, or single-cell analysis, one frequently encounters datasets which are orders of magnitude too large for conventional in-memory analysis. To tackle this challenge, we introduce SIMBSIG (SIMmilarity Batched Search Integ...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825260/ https://www.ncbi.nlm.nih.gov/pubmed/36610707 http://dx.doi.org/10.1093/bioinformatics/btac829 |
Sumario: | SUMMARY: In many modern bioinformatics applications, such as statistical genetics, or single-cell analysis, one frequently encounters datasets which are orders of magnitude too large for conventional in-memory analysis. To tackle this challenge, we introduce SIMBSIG (SIMmilarity Batched Search Integrated GPU), a highly scalable Python package which provides a scikit-learn-like interface for out-of-core, GPU-enabled similarity searches, principal component analysis and clustering. Due to the PyTorch backend, it is highly modular and particularly tailored to many data types with a particular focus on biobank data analysis. AVAILABILITY AND IMPLEMENTATION: SIMBSIG is freely available from PyPI and its source code and documentation can be found on GitHub (https://github.com/BorgwardtLab/simbsig) under a BSD-3 license. |
---|