Cargando…
Biophysical informatics reveals distinctive phenotypic signatures and functional diversity of single-cell lineages
MOTIVATION: In this work, we present an analytical method for quantifying both single-cell morphologies and cell network topologies of tumor cell populations and use it to predict 3D cell behavior. RESULTS: We utilized a supervised deep learning approach to perform instance segmentation on label-fre...
Autores principales: | Chan, Trevor J, Zhang, Xingjian, Mak, Michael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825265/ https://www.ncbi.nlm.nih.gov/pubmed/36610710 http://dx.doi.org/10.1093/bioinformatics/btac833 |
Ejemplares similares
-
Morphodynamic signatures of MDA-MB-231 single cells and cell doublets undergoing invasion in confined microenvironments
por: Zhang, Xingjian, et al.
Publicado: (2021) -
Biophysical subsets of embryonic stem cells display distinct phenotypic and morphological signatures
por: Bongiorno, Tom, et al.
Publicado: (2018) -
Classification of protein–protein association rates based on biophysical informatics
por: Dhusia, Kalyani, et al.
Publicado: (2021) -
Distinct Phenotypic and Genomic Signatures Underlie Contrasting Pathogenic Potential of Staphylococcus epidermidis Clonal Lineages
por: Espadinha, Diana, et al.
Publicado: (2019) -
A bioimage informatics platform for high-throughput embryo phenotyping
por: Brown, James M, et al.
Publicado: (2016)