Cargando…
Discovering comorbid diseases using an inter-disease interactivity network based on biobank-scale PheWAS data
MOTIVATION: Understanding comorbidity is essential for disease prevention, treatment and prognosis. In particular, insight into which pairs of diseases are likely or unlikely to co-occur may help elucidate the potential relationships between complex diseases. Here, we introduce the use of an inter-d...
Autores principales: | Nam, Yonghyun, Jung, Sang-Hyuk, Yun, Jae-Seung, Sriram, Vivek, Singhal, Pankhuri, Byrska-Bishop, Marta, Verma, Anurag, Shin, Hyunjung, Park, Woong-Yang, Won, Hong-Hee, Kim, Dokyoon |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825330/ https://www.ncbi.nlm.nih.gov/pubmed/36571484 http://dx.doi.org/10.1093/bioinformatics/btac822 |
Ejemplares similares
-
netCRS: Network-based comorbidity risk score for prediction of myocardial infarction using biobank-scaled PheWAS data
por: Nam, Yonghyun, et al.
Publicado: (2022) -
Human-Disease Phenotype Map Derived from PheWAS across 38,682 Individuals
por: Verma, Anurag, et al.
Publicado: (2019) -
PheWAS: demonstrating the feasibility of a phenome-wide scan to discover gene–disease associations
por: Denny, Joshua C., et al.
Publicado: (2010) -
Visually integrating and exploring high throughput Phenome-Wide Association Study (PheWAS) results using PheWAS-View
por: Pendergrass, Sarah A, et al.
Publicado: (2012) -
A cross-disorder PRS-pheWAS of 5 major psychiatric disorders in UK Biobank
por: Leppert, Beate, et al.
Publicado: (2020)