Cargando…
Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
Annotating cancerous regions in whole-slide images (WSIs) of pathology samples plays a critical role in clinical diagnosis, biomedical research, and machine learning algorithms development. However, generating exhaustive and accurate annotations is labor-intensive, challenging, and costly. Drawing o...
Autores principales: | Wang, Zhenzhen, Saoud, Carla, Wangsiricharoen, Sintawat, James, Aaron W., Popel, Aleksander S., Sulam, Jeremias |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825360/ https://www.ncbi.nlm.nih.gov/pubmed/36037454 http://dx.doi.org/10.1109/TMI.2022.3202759 |
Ejemplares similares
-
Contrastive Multiple Instance Learning: An Unsupervised Framework for Learning Slide-Level Representations of Whole Slide Histopathology Images without Labels
por: Tavolara, Thomas E., et al.
Publicado: (2022) -
Multiple-instance-learning-based detection of coeliac disease in histological whole-slide images
por: Denholm, J., et al.
Publicado: (2022) -
THU463 Etiology Of Hypophosphatemia In A Patient With Co-existing Mesenchymal Tumor And Fibrous Dysplasia
por: Patil, Madhuri, et al.
Publicado: (2023) -
Ancillary studies on cell blocks from fine needle aspiration specimens of salivary gland lesions: A multi‐institutional study
por: Tabibi, Seena, et al.
Publicado: (2022) -
Annotations, Ontologies, and Whole Slide Images – Development of an Annotated Ontology-Driven Whole Slide Image Library of Normal and Abnormal Human Tissue
por: Lindman, Karin, et al.
Publicado: (2019)