Cargando…
CREAMMIST: an integrative probabilistic database for cancer drug response prediction
Extensive in vitro cancer drug screening datasets have enabled scientists to identify biomarkers and develop machine learning models for predicting drug sensitivity. While most advancements have focused on omics profiles, cancer drug sensitivity scores precalculated by the original sources are often...
Autores principales: | Yingtaweesittikul, Hatairat, Wu, Jiaxi, Mongia, Aanchal, Peres, Rafael, Ko, Karrie, Nagarajan, Niranjan, Suphavilai, Chayaporn |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825458/ https://www.ncbi.nlm.nih.gov/pubmed/36259664 http://dx.doi.org/10.1093/nar/gkac911 |
Ejemplares similares
-
CalmBelt: Rapid SARS-CoV-2 Genome Characterization for Outbreak Tracking
por: Yingtaweesittikul, Hatairat, et al.
Publicado: (2021) -
Predicting heterogeneity in clone-specific therapeutic vulnerabilities using single-cell transcriptomic signatures
por: Suphavilai, Chayaporn, et al.
Publicado: (2021) -
TUGDA: task uncertainty guided domain adaptation for robust generalization of cancer drug response prediction from in vitro to in vivo settings
por: Peres da Silva, Rafael, et al.
Publicado: (2021) -
Emergence of SARS-CoV-2 Spike Mutations during Prolonged Infection in Immunocompromised Hosts
por: Ko, Karrie K. K., et al.
Publicado: (2022) -
PharmacoDB: an integrative database for mining in vitro anticancer drug screening studies
por: Smirnov, Petr, et al.
Publicado: (2018)