Cargando…

TmAlphaFold database: membrane localization and evaluation of AlphaFold2 predicted alpha-helical transmembrane protein structures

AI-driven protein structure prediction, most notably AlphaFold2 (AF2) opens new frontiers for almost all fields of structural biology. As traditional structure prediction methods for transmembrane proteins were both complicated and error prone, AF2 is a great help to the community. Complementing the...

Descripción completa

Detalles Bibliográficos
Autores principales: Dobson, Laszlo, Szekeres, Levente I, Gerdán, Csongor, Langó, Tamás, Zeke, András, Tusnády, Gábor E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825488/
https://www.ncbi.nlm.nih.gov/pubmed/36318239
http://dx.doi.org/10.1093/nar/gkac928
Descripción
Sumario:AI-driven protein structure prediction, most notably AlphaFold2 (AF2) opens new frontiers for almost all fields of structural biology. As traditional structure prediction methods for transmembrane proteins were both complicated and error prone, AF2 is a great help to the community. Complementing the relatively meager number of experimental structures, AF2 provides 3D predictions for thousands of new alpha-helical membrane proteins. However, the lack of reliable structural templates and the fact that AF2 was not trained to handle phase boundaries also necessitates a delicate assessment of structural correctness. In our new database, Transmembrane AlphaFold database (TmAlphaFold database), we apply TMDET, a simple geometry-based method to visualize the likeliest position of the membrane plane. In addition, we calculate several parameters to evaluate the location of the protein into the membrane. This also allows TmAlphaFold database to show whether the predicted 3D structure is realistic or not. The TmAlphaFold database is available at https://tmalphafold.ttk.hu/.