Cargando…

MGnify: the microbiome sequence data analysis resource in 2023

The MGnify platform (https://www.ebi.ac.uk/metagenomics) facilitates the assembly, analysis and archiving of microbiome-derived nucleic acid sequences. The platform provides access to taxonomic assignments and functional annotations for nearly half a million analyses covering metabarcoding, metatran...

Descripción completa

Detalles Bibliográficos
Autores principales: Richardson, Lorna, Allen, Ben, Baldi, Germana, Beracochea, Martin, Bileschi, Maxwell L, Burdett, Tony, Burgin, Josephine, Caballero-Pérez, Juan, Cochrane, Guy, Colwell, Lucy J, Curtis, Tom, Escobar-Zepeda, Alejandra, Gurbich, Tatiana A, Kale, Varsha, Korobeynikov, Anton, Raj, Shriya, Rogers, Alexander B, Sakharova, Ekaterina, Sanchez, Santiago, Wilkinson, Darren J, Finn, Robert D
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825492/
https://www.ncbi.nlm.nih.gov/pubmed/36477304
http://dx.doi.org/10.1093/nar/gkac1080
_version_ 1784866644011515904
author Richardson, Lorna
Allen, Ben
Baldi, Germana
Beracochea, Martin
Bileschi, Maxwell L
Burdett, Tony
Burgin, Josephine
Caballero-Pérez, Juan
Cochrane, Guy
Colwell, Lucy J
Curtis, Tom
Escobar-Zepeda, Alejandra
Gurbich, Tatiana A
Kale, Varsha
Korobeynikov, Anton
Raj, Shriya
Rogers, Alexander B
Sakharova, Ekaterina
Sanchez, Santiago
Wilkinson, Darren J
Finn, Robert D
author_facet Richardson, Lorna
Allen, Ben
Baldi, Germana
Beracochea, Martin
Bileschi, Maxwell L
Burdett, Tony
Burgin, Josephine
Caballero-Pérez, Juan
Cochrane, Guy
Colwell, Lucy J
Curtis, Tom
Escobar-Zepeda, Alejandra
Gurbich, Tatiana A
Kale, Varsha
Korobeynikov, Anton
Raj, Shriya
Rogers, Alexander B
Sakharova, Ekaterina
Sanchez, Santiago
Wilkinson, Darren J
Finn, Robert D
author_sort Richardson, Lorna
collection PubMed
description The MGnify platform (https://www.ebi.ac.uk/metagenomics) facilitates the assembly, analysis and archiving of microbiome-derived nucleic acid sequences. The platform provides access to taxonomic assignments and functional annotations for nearly half a million analyses covering metabarcoding, metatranscriptomic, and metagenomic datasets, which are derived from a wide range of different environments. Over the past 3 years, MGnify has not only grown in terms of the number of datasets contained but also increased the breadth of analyses provided, such as the analysis of long-read sequences. The MGnify protein database now exceeds 2.4 billion non-redundant sequences predicted from metagenomic assemblies. This collection is now organised into a relational database making it possible to understand the genomic context of the protein through navigation back to the source assembly and sample metadata, marking a major improvement. To extend beyond the functional annotations already provided in MGnify, we have applied deep learning-based annotation methods. The technology underlying MGnify's Application Programming Interface (API) and website has been upgraded, and we have enabled the ability to perform downstream analysis of the MGnify data through the introduction of a coupled Jupyter Lab environment.
format Online
Article
Text
id pubmed-9825492
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98254922023-01-10 MGnify: the microbiome sequence data analysis resource in 2023 Richardson, Lorna Allen, Ben Baldi, Germana Beracochea, Martin Bileschi, Maxwell L Burdett, Tony Burgin, Josephine Caballero-Pérez, Juan Cochrane, Guy Colwell, Lucy J Curtis, Tom Escobar-Zepeda, Alejandra Gurbich, Tatiana A Kale, Varsha Korobeynikov, Anton Raj, Shriya Rogers, Alexander B Sakharova, Ekaterina Sanchez, Santiago Wilkinson, Darren J Finn, Robert D Nucleic Acids Res Database Issue The MGnify platform (https://www.ebi.ac.uk/metagenomics) facilitates the assembly, analysis and archiving of microbiome-derived nucleic acid sequences. The platform provides access to taxonomic assignments and functional annotations for nearly half a million analyses covering metabarcoding, metatranscriptomic, and metagenomic datasets, which are derived from a wide range of different environments. Over the past 3 years, MGnify has not only grown in terms of the number of datasets contained but also increased the breadth of analyses provided, such as the analysis of long-read sequences. The MGnify protein database now exceeds 2.4 billion non-redundant sequences predicted from metagenomic assemblies. This collection is now organised into a relational database making it possible to understand the genomic context of the protein through navigation back to the source assembly and sample metadata, marking a major improvement. To extend beyond the functional annotations already provided in MGnify, we have applied deep learning-based annotation methods. The technology underlying MGnify's Application Programming Interface (API) and website has been upgraded, and we have enabled the ability to perform downstream analysis of the MGnify data through the introduction of a coupled Jupyter Lab environment. Oxford University Press 2022-12-07 /pmc/articles/PMC9825492/ /pubmed/36477304 http://dx.doi.org/10.1093/nar/gkac1080 Text en © The Author(s) 2022. Published by Oxford University Press on behalf of Nucleic Acids Research. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Database Issue
Richardson, Lorna
Allen, Ben
Baldi, Germana
Beracochea, Martin
Bileschi, Maxwell L
Burdett, Tony
Burgin, Josephine
Caballero-Pérez, Juan
Cochrane, Guy
Colwell, Lucy J
Curtis, Tom
Escobar-Zepeda, Alejandra
Gurbich, Tatiana A
Kale, Varsha
Korobeynikov, Anton
Raj, Shriya
Rogers, Alexander B
Sakharova, Ekaterina
Sanchez, Santiago
Wilkinson, Darren J
Finn, Robert D
MGnify: the microbiome sequence data analysis resource in 2023
title MGnify: the microbiome sequence data analysis resource in 2023
title_full MGnify: the microbiome sequence data analysis resource in 2023
title_fullStr MGnify: the microbiome sequence data analysis resource in 2023
title_full_unstemmed MGnify: the microbiome sequence data analysis resource in 2023
title_short MGnify: the microbiome sequence data analysis resource in 2023
title_sort mgnify: the microbiome sequence data analysis resource in 2023
topic Database Issue
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825492/
https://www.ncbi.nlm.nih.gov/pubmed/36477304
http://dx.doi.org/10.1093/nar/gkac1080
work_keys_str_mv AT richardsonlorna mgnifythemicrobiomesequencedataanalysisresourcein2023
AT allenben mgnifythemicrobiomesequencedataanalysisresourcein2023
AT baldigermana mgnifythemicrobiomesequencedataanalysisresourcein2023
AT beracocheamartin mgnifythemicrobiomesequencedataanalysisresourcein2023
AT bileschimaxwelll mgnifythemicrobiomesequencedataanalysisresourcein2023
AT burdetttony mgnifythemicrobiomesequencedataanalysisresourcein2023
AT burginjosephine mgnifythemicrobiomesequencedataanalysisresourcein2023
AT caballeroperezjuan mgnifythemicrobiomesequencedataanalysisresourcein2023
AT cochraneguy mgnifythemicrobiomesequencedataanalysisresourcein2023
AT colwelllucyj mgnifythemicrobiomesequencedataanalysisresourcein2023
AT curtistom mgnifythemicrobiomesequencedataanalysisresourcein2023
AT escobarzepedaalejandra mgnifythemicrobiomesequencedataanalysisresourcein2023
AT gurbichtatianaa mgnifythemicrobiomesequencedataanalysisresourcein2023
AT kalevarsha mgnifythemicrobiomesequencedataanalysisresourcein2023
AT korobeynikovanton mgnifythemicrobiomesequencedataanalysisresourcein2023
AT rajshriya mgnifythemicrobiomesequencedataanalysisresourcein2023
AT rogersalexanderb mgnifythemicrobiomesequencedataanalysisresourcein2023
AT sakharovaekaterina mgnifythemicrobiomesequencedataanalysisresourcein2023
AT sanchezsantiago mgnifythemicrobiomesequencedataanalysisresourcein2023
AT wilkinsondarrenj mgnifythemicrobiomesequencedataanalysisresourcein2023
AT finnrobertd mgnifythemicrobiomesequencedataanalysisresourcein2023