Cargando…
Machine learning modeling for the prediction of plastic properties in metallic glasses
Metallic glasses are one of the most interesting mechanical materials studied in the last years, but as amorphous solids, they differ strongly from their crystalline counterparts. This matter can be addressed with the development and application of predictive techniques capable to describe the plast...
Autores principales: | Amigo, Nicolás, Palominos, Simón, Valencia, Felipe J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825623/ https://www.ncbi.nlm.nih.gov/pubmed/36611063 http://dx.doi.org/10.1038/s41598-023-27644-x |
Ejemplares similares
-
Research on metallic glasses at the atomic scale: a systematic review
por: Amigo, Nicolás, et al.
Publicado: (2022) -
Thermodynamically-guided machine learning modelling for predicting the glass-forming ability of bulk metallic glasses
por: Ghorbani, Alireza, et al.
Publicado: (2022) -
Evolutionary design of machine-learning-predicted bulk metallic glasses
por: Forrest, Robert M., et al.
Publicado: (2023) -
A transferable machine-learning framework linking interstice distribution and plastic heterogeneity in metallic glasses
por: Wang, Qi, et al.
Publicado: (2019) -
Plastic Deformation of Pressured Metallic Glass
por: Cheng, Yun, et al.
Publicado: (2017)