Cargando…
Benchmarking and integration of methods for deconvoluting spatial transcriptomic data
MOTIVATION: The rapid development of spatial transcriptomics (ST) approaches has provided new insights into understanding tissue architecture and function. However, the gene expressions measured at a spot may contain contributions from multiple cells due to the low-resolution of current ST technolog...
Autores principales: | Yan, Lulu, Sun, Xiaoqiang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825747/ https://www.ncbi.nlm.nih.gov/pubmed/36515467 http://dx.doi.org/10.1093/bioinformatics/btac805 |
Ejemplares similares
-
A comprehensive benchmarking with practical guidelines for cellular deconvolution of spatial transcriptomics
por: Li, Haoyang, et al.
Publicado: (2023) -
Benchmarking of cell type deconvolution pipelines for transcriptomics data
por: Avila Cobos, Francisco, et al.
Publicado: (2020) -
SD(2): spatially resolved transcriptomics deconvolution through integration of dropout and spatial information
por: Li, Haoyang, et al.
Publicado: (2022) -
Author Correction: Benchmarking of cell type deconvolution pipelines for transcriptomics data
por: Cobos, Francisco Avila, et al.
Publicado: (2020) -
SpatialDWLS: accurate deconvolution of spatial transcriptomic data
por: Dong, Rui, et al.
Publicado: (2021)