Cargando…

GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data

SUMMARY: With the continued deluge of results from genome-wide association and functional genomic studies, it has become increasingly imperative to quickly combine and visualize different layers of genetic and genomic data within a given locus to facilitate exploratory and integrative data analyses....

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Minsoo, Vo, Daniel D, Kumagai, Michi E, Jops, Connor T, Gandal, Michael J
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825774/
https://www.ncbi.nlm.nih.gov/pubmed/36495218
http://dx.doi.org/10.1093/bioinformatics/btac786
_version_ 1784866695688486912
author Kim, Minsoo
Vo, Daniel D
Kumagai, Michi E
Jops, Connor T
Gandal, Michael J
author_facet Kim, Minsoo
Vo, Daniel D
Kumagai, Michi E
Jops, Connor T
Gandal, Michael J
author_sort Kim, Minsoo
collection PubMed
description SUMMARY: With the continued deluge of results from genome-wide association and functional genomic studies, it has become increasingly imperative to quickly combine and visualize different layers of genetic and genomic data within a given locus to facilitate exploratory and integrative data analyses. While several tools have been developed to visualize locus-level genetic results, the limited speed, scalability and flexibility of current approaches remain a significant bottleneck. Here, we present a Julia package for high-performance genetics and genomics-related data visualization that enables fast, simultaneous plotting of hundreds of association results along with multiple relevant genomic annotations. Leveraging the powerful plotting and layout utilities from Makie.jl facilitates the customization and extensibility of every component of a plot, enabling generation of publication-ready figures. AVAILABILITY AND IMPLEMENTATION: The GeneticsMakie.jl package is open source and distributed under the MIT license via GitHub (https://github.com/mmkim1210/GeneticsMakie.jl). The GitHub repository contains installation instructions as well as examples and documentation for built-in functions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
format Online
Article
Text
id pubmed-9825774
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-98257742023-01-10 GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data Kim, Minsoo Vo, Daniel D Kumagai, Michi E Jops, Connor T Gandal, Michael J Bioinformatics Applications Note SUMMARY: With the continued deluge of results from genome-wide association and functional genomic studies, it has become increasingly imperative to quickly combine and visualize different layers of genetic and genomic data within a given locus to facilitate exploratory and integrative data analyses. While several tools have been developed to visualize locus-level genetic results, the limited speed, scalability and flexibility of current approaches remain a significant bottleneck. Here, we present a Julia package for high-performance genetics and genomics-related data visualization that enables fast, simultaneous plotting of hundreds of association results along with multiple relevant genomic annotations. Leveraging the powerful plotting and layout utilities from Makie.jl facilitates the customization and extensibility of every component of a plot, enabling generation of publication-ready figures. AVAILABILITY AND IMPLEMENTATION: The GeneticsMakie.jl package is open source and distributed under the MIT license via GitHub (https://github.com/mmkim1210/GeneticsMakie.jl). The GitHub repository contains installation instructions as well as examples and documentation for built-in functions. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online. Oxford University Press 2022-12-10 /pmc/articles/PMC9825774/ /pubmed/36495218 http://dx.doi.org/10.1093/bioinformatics/btac786 Text en © The Author(s) 2022. Published by Oxford University Press. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Applications Note
Kim, Minsoo
Vo, Daniel D
Kumagai, Michi E
Jops, Connor T
Gandal, Michael J
GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title_full GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title_fullStr GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title_full_unstemmed GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title_short GeneticsMakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
title_sort geneticsmakie.jl: a versatile and scalable toolkit for visualizing locus-level genetic and genomic data
topic Applications Note
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825774/
https://www.ncbi.nlm.nih.gov/pubmed/36495218
http://dx.doi.org/10.1093/bioinformatics/btac786
work_keys_str_mv AT kimminsoo geneticsmakiejlaversatileandscalabletoolkitforvisualizinglocuslevelgeneticandgenomicdata
AT vodanield geneticsmakiejlaversatileandscalabletoolkitforvisualizinglocuslevelgeneticandgenomicdata
AT kumagaimichie geneticsmakiejlaversatileandscalabletoolkitforvisualizinglocuslevelgeneticandgenomicdata
AT jopsconnort geneticsmakiejlaversatileandscalabletoolkitforvisualizinglocuslevelgeneticandgenomicdata
AT gandalmichaelj geneticsmakiejlaversatileandscalabletoolkitforvisualizinglocuslevelgeneticandgenomicdata