Cargando…
Computational prediction and characterization of cell-type-specific and shared binding sites
MOTIVATION: Cell-type-specific gene expression is maintained in large part by transcription factors (TFs) selectively binding to distinct sets of sites in different cell types. Recent research works have provided evidence that such cell-type-specific binding is determined by TF’s intrinsic sequence...
Autores principales: | Zhang, Qinhu, Teng, Pengrui, Wang, Siguo, He, Ying, Cui, Zhen, Guo, Zhenghao, Liu, Yixin, Yuan, Changan, Liu, Qi, Huang, De-Shuang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825777/ https://www.ncbi.nlm.nih.gov/pubmed/36484687 http://dx.doi.org/10.1093/bioinformatics/btac798 |
Ejemplares similares
-
Predicting transcription factor binding sites using DNA shape features based on shared hybrid deep learning architecture
por: Wang, Siguo, et al.
Publicado: (2021) -
Locating transcription factor binding sites by fully convolutional neural network
por: Zhang, Qinhu, et al.
Publicado: (2021) -
DLoopCaller: A deep learning approach for predicting genome-wide chromatin loops by integrating accessible chromatin landscapes
por: Wang, Siguo, et al.
Publicado: (2022) -
Base-resolution prediction of transcription factor binding signals by a deep learning framework
por: Zhang, Qinhu, et al.
Publicado: (2022) -
A survey on deep learning in DNA/RNA motif mining
por: He, Ying, et al.
Publicado: (2020)