Cargando…
Kernel‐based active subspaces with application to computational fluid dynamics parametric problems using the discontinuous Galerkin method
Nonlinear extensions to the active subspaces method have brought remarkable results for dimension reduction in the parameter space and response surface design. We further develop a kernel‐based nonlinear method. In particular, we introduce it in a broader mathematical framework that contemplates als...
Autores principales: | Romor, Francesco, Tezzele, Marco, Lario, Andrea, Rozza, Gianluigi |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9825883/ https://www.ncbi.nlm.nih.gov/pubmed/36632376 http://dx.doi.org/10.1002/nme.7099 |
Ejemplares similares
-
Dimension reduction in heterogeneous parametric spaces with application to naval engineering shape design problems
por: Tezzele, Marco, et al.
Publicado: (2018) -
Discontinuous galerkin methods: theory, computation and applications
por: Cockburn, Bernardo, et al.
Publicado: (2000) -
Mathematical Aspects of Discontinuous Galerkin Methods
por: Di Pietro, Daniele Antonio, et al.
Publicado: (2012) -
Superconvergence of the local discontinuous Galerkin method for nonlinear convection-diffusion problems
por: Bi, Hui, et al.
Publicado: (2017) -
A Stable Discontinuous Galerkin Based Isogeometric Residual Minimization for the Stokes Problem
por: Łoś, Marcin, et al.
Publicado: (2020)