Cargando…
Automated particle recognition for engine soot nanoparticles
A pre‐trained convolution neural network based on residual error functions (ResNet) was applied to the classification of soot and non‐soot carbon nanoparticles in TEM images. Two depths of ResNet, one 18 layers deep and the other 50 layers deep, were trained using training‐validation sets of increas...
Autores principales: | Haffner‐Staton, E., Avanzini, L., La Rocca, A., Pfau, S. A., Cairns, A. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826170/ https://www.ncbi.nlm.nih.gov/pubmed/36065981 http://dx.doi.org/10.1111/jmi.13140 |
Ejemplares similares
-
Progress towards a methodology for high throughput 3D reconstruction of soot nanoparticles via electron tomography
por: HAFFNER‐STATON, E., et al.
Publicado: (2018) -
Preparation of Cerium‐Bismuth Oxide Catalysts for Diesel Soot Oxidation Including Evaluation of an Automated Soot‐Catalyst Contact Mode
por: Hebert, Sabrina Christina, et al.
Publicado: (2022) -
Collection of soot particles into aqueous suspension using a particle-into-liquid sampler
por: Wonaschuetz, Anna, et al.
Publicado: (2018) -
CeO(2)-based catalysts with engineered morphologies for soot oxidation to enhance soot-catalyst contact
por: Miceli, Paolo, et al.
Publicado: (2014) -
Influence of unsaturation of hydrocarbons on the characteristics and carcinogenicity of soot particles
por: Dandajeh, Hamisu Adamu, et al.
Publicado: (2020)