Cargando…

MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns

OBJECTIVE: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes. METHODS: We performed T1‐weighted and diffusion tensor imaging in 488 clinically...

Descripción completa

Detalles Bibliográficos
Autores principales: Tan, Harold H. G., Westeneng, Henk‐Jan, Nitert, Abram D., van Veenhuijzen, Kevin, Meier, Jil M., van der Burgh, Hannelore K., van Zandvoort, Martine J. E., van Es, Michael A., Veldink, Jan H., van den Berg, Leonard H.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826424/
https://www.ncbi.nlm.nih.gov/pubmed/36054734
http://dx.doi.org/10.1002/ana.26488
_version_ 1784866848136757248
author Tan, Harold H. G.
Westeneng, Henk‐Jan
Nitert, Abram D.
van Veenhuijzen, Kevin
Meier, Jil M.
van der Burgh, Hannelore K.
van Zandvoort, Martine J. E.
van Es, Michael A.
Veldink, Jan H.
van den Berg, Leonard H.
author_facet Tan, Harold H. G.
Westeneng, Henk‐Jan
Nitert, Abram D.
van Veenhuijzen, Kevin
Meier, Jil M.
van der Burgh, Hannelore K.
van Zandvoort, Martine J. E.
van Es, Michael A.
Veldink, Jan H.
van den Berg, Leonard H.
author_sort Tan, Harold H. G.
collection PubMed
description OBJECTIVE: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes. METHODS: We performed T1‐weighted and diffusion tensor imaging in 488 clinically well‐characterized patients with ALS and 338 control subjects. Measurements of whole‐brain cortical thickness and white matter connectome fractional anisotropy were adjusted for disease‐unrelated variation. A probabilistic network‐based clustering algorithm was used to divide patients into subgroups of similar neurodegeneration patterns. Clinical characteristics and cognitive profiles were assessed for each subgroup. In total, 512 follow‐up scans were used to validate clustering results longitudinally. RESULTS: The clustering algorithm divided patients with ALS into 3 subgroups of 187, 163, and 138 patients. All subgroups displayed involvement of the precentral gyrus and are characterized, respectively, by (1) pure motor involvement (pure motor cluster [PM]), (2) orbitofrontal and temporal involvement (frontotemporal cluster [FT]), and (3) involvement of the posterior cingulate cortex, parietal white matter, temporal operculum, and cerebellum (cingulate‐parietal–temporal cluster [CPT]). These subgroups had significantly distinct clinical profiles regarding male‐to‐female ratio, age at symptom onset, and frequency of bulbar symptom onset. FT and CPT revealed higher rates of cognitive impairment on the Edinburgh cognitive and behavioral ALS screen (ECAS). Longitudinally, clustering remained stable: at 90.4% of their follow‐up visits, patients clustered in the same subgroup as their baseline visit. INTERPRETATION: ALS can manifest itself in 3 main patterns of cerebral neurodegeneration, each associated with distinct clinical characteristics and cognitive profiles. Besides the pure motor and frontotemporal dementia (FTD)‐like variants of ALS, a new neuroimaging phenotype has emerged, characterized by posterior cingulate, parietal, temporal, and cerebellar involvement. ANN NEUROL 2022;92:1030–1045
format Online
Article
Text
id pubmed-9826424
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-98264242023-01-09 MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns Tan, Harold H. G. Westeneng, Henk‐Jan Nitert, Abram D. van Veenhuijzen, Kevin Meier, Jil M. van der Burgh, Hannelore K. van Zandvoort, Martine J. E. van Es, Michael A. Veldink, Jan H. van den Berg, Leonard H. Ann Neurol Research Articles OBJECTIVE: The purpose of this study was to identify subtypes of amyotrophic lateral sclerosis (ALS) by comparing patterns of neurodegeneration using brain magnetic resonance imaging (MRI) and explore their phenotypes. METHODS: We performed T1‐weighted and diffusion tensor imaging in 488 clinically well‐characterized patients with ALS and 338 control subjects. Measurements of whole‐brain cortical thickness and white matter connectome fractional anisotropy were adjusted for disease‐unrelated variation. A probabilistic network‐based clustering algorithm was used to divide patients into subgroups of similar neurodegeneration patterns. Clinical characteristics and cognitive profiles were assessed for each subgroup. In total, 512 follow‐up scans were used to validate clustering results longitudinally. RESULTS: The clustering algorithm divided patients with ALS into 3 subgroups of 187, 163, and 138 patients. All subgroups displayed involvement of the precentral gyrus and are characterized, respectively, by (1) pure motor involvement (pure motor cluster [PM]), (2) orbitofrontal and temporal involvement (frontotemporal cluster [FT]), and (3) involvement of the posterior cingulate cortex, parietal white matter, temporal operculum, and cerebellum (cingulate‐parietal–temporal cluster [CPT]). These subgroups had significantly distinct clinical profiles regarding male‐to‐female ratio, age at symptom onset, and frequency of bulbar symptom onset. FT and CPT revealed higher rates of cognitive impairment on the Edinburgh cognitive and behavioral ALS screen (ECAS). Longitudinally, clustering remained stable: at 90.4% of their follow‐up visits, patients clustered in the same subgroup as their baseline visit. INTERPRETATION: ALS can manifest itself in 3 main patterns of cerebral neurodegeneration, each associated with distinct clinical characteristics and cognitive profiles. Besides the pure motor and frontotemporal dementia (FTD)‐like variants of ALS, a new neuroimaging phenotype has emerged, characterized by posterior cingulate, parietal, temporal, and cerebellar involvement. ANN NEUROL 2022;92:1030–1045 John Wiley & Sons, Inc. 2022-09-20 2022-12 /pmc/articles/PMC9826424/ /pubmed/36054734 http://dx.doi.org/10.1002/ana.26488 Text en © 2022 The Authors. Annals of Neurology published by Wiley Periodicals LLC on behalf of American Neurological Association. https://creativecommons.org/licenses/by-nc/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc/4.0/ (https://creativecommons.org/licenses/by-nc/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
spellingShingle Research Articles
Tan, Harold H. G.
Westeneng, Henk‐Jan
Nitert, Abram D.
van Veenhuijzen, Kevin
Meier, Jil M.
van der Burgh, Hannelore K.
van Zandvoort, Martine J. E.
van Es, Michael A.
Veldink, Jan H.
van den Berg, Leonard H.
MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title_full MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title_fullStr MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title_full_unstemmed MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title_short MRI Clustering Reveals Three ALS Subtypes With Unique Neurodegeneration Patterns
title_sort mri clustering reveals three als subtypes with unique neurodegeneration patterns
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826424/
https://www.ncbi.nlm.nih.gov/pubmed/36054734
http://dx.doi.org/10.1002/ana.26488
work_keys_str_mv AT tanharoldhg mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT westenenghenkjan mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT nitertabramd mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT vanveenhuijzenkevin mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT meierjilm mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT vanderburghhannelorek mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT vanzandvoortmartineje mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT vanesmichaela mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT veldinkjanh mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns
AT vandenbergleonardh mriclusteringrevealsthreealssubtypeswithuniqueneurodegenerationpatterns