Cargando…
Case studies in bias reduction and inference for electronic health record data with selection bias and phenotype misclassification
Electronic health records (EHR) are not designed for population‐based research, but they provide easy and quick access to longitudinal health information for a large number of individuals. Many statistical methods have been proposed to account for selection bias, missing data, phenotyping errors, or...
Autores principales: | Beesley, Lauren J., Mukherjee, Bhramar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley & Sons, Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826451/ https://www.ncbi.nlm.nih.gov/pubmed/36131394 http://dx.doi.org/10.1002/sim.9579 |
Ejemplares similares
-
Bias reduction and inference for electronic health record data under selection and phenotype misclassification: three case studies
por: Beesley, Lauren J., et al.
Publicado: (2020) -
Selection and Misclassification Biases in Longitudinal Studies
por: Haine, Denis, et al.
Publicado: (2018) -
Misclassification bias and unnecessary anxiety
por: Knight, Marian, et al.
Publicado: (2021) -
Misclassification and Bias in Military Studies of Mefloquine
por: Lee Nevin, Remington
Publicado: (2017) -
Exposure misclassification bias in the estimation of vaccine effectiveness
por: Baum, Ulrike, et al.
Publicado: (2021)