Cargando…

Amide Proton Transfer-weighted MRI combined with serum prostate-specific antigen levels for differentiating malignant prostate lesions from benign prostate lesions: a retrospective cohort study

BACKGROUND: Early diagnosis of prostate cancer improves its prognosis, while it is essential to upgrade screening tools. This study aimed to explore the value of a novel functional magnetic resonance imaging (MRI) technique, namely amide proton transfer (APT)-weighted MRI, combined with serum prosta...

Descripción completa

Detalles Bibliográficos
Autores principales: Yang, Lu, Wang, Lei, Tan, Yuchuan, Dan, Hanli, Xian, Peng, Zhang, Yipeng, Tan, Yong, Lin, Meng, Zhang, Jiuquan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2023
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826590/
https://www.ncbi.nlm.nih.gov/pubmed/36611191
http://dx.doi.org/10.1186/s40644-022-00515-w
Descripción
Sumario:BACKGROUND: Early diagnosis of prostate cancer improves its prognosis, while it is essential to upgrade screening tools. This study aimed to explore the value of a novel functional magnetic resonance imaging (MRI) technique, namely amide proton transfer (APT)-weighted MRI, combined with serum prostate-specific antigen (PSA) levels to differentiate malignant prostate lesions from benign prostate lesions. METHODS: Data of patients who underwent prostate examinations at Chongqing University Cancer Hospital between July 2019 and March 2022 were retrospectively analyzed. All patients underwent T2-weighted imaging (T2WI), APT, diffusion-weighted imaging (DWI), and dynamic contrast-enhanced (DCE) MRI. Two radiologists analyzed the images independently. The ability of the quantitative parameters alone or in different combinations in differentiating malignant prostate lesions from benign prostate lesions were compared by using receiver operating characteristic (ROC) curves. According to the DeLong test, the combined parameters were significantly different from the corresponding single parameter (P < 0.05). RESULTS: A total of 79 patients were finally enrolled, including 52 patients in the malignant group and 27 patients in the benign group. The separate assessment of indexes revealed that APTmax, APTmean, mean apparent diffusion coefficient (ADCmean), ADCmax, ADCmin, tPAD, free prostate-specific antigen (FPSA), FPSA/total prostate-specific antigen (tPSA), and PSA density (PSAD) were significantly different between the two groups (P < 0.05), while APTmin was not significantly different between the two groups (P > 0.05). APTmax and APTmean had the high values of area under the ROC curve (AUC), which were 0.780 and 0.710, respectively. APTmax had a high sensitivity, and APTmean had a high specificity. The combination of APTmax, APTmean, ADCmean, and PSAD had the highest AUC value (AUC: 0.880, sensitivity: 86.540, specificity: 78.260). CONCLUSION: APTmax, APTmean, ADCmean, ADCmin, tPAD, FPSA, and PSAD showed to have a high value in differentiating malignant prostate lesions from benign prostate lesions in the separate assessment of indexes. The combination of APTmax, APTmean, ADCmean, and PSAD had the highest diagnostic value.