Cargando…
Forecasting GDP with many predictors in a small open economy: forecast or information pooling?
This study compares two distinct approaches, pooling forecasts from single indicator MIDAS models versus pooling information from indicators into factor MIDAS models, for short-term Singapore GDP growth forecasting with a large ragged-edge mixed frequency dataset. We consider various popular weighti...
Autores principales: | Chow, Hwee Kwan, Fei, Yijie, Han, Daniel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826763/ https://www.ncbi.nlm.nih.gov/pubmed/36643201 http://dx.doi.org/10.1007/s00181-022-02356-9 |
Ejemplares similares
-
GDP Forecasting: Machine Learning, Linear or Autoregression?
por: Maccarrone, Giovanni, et al.
Publicado: (2021) -
Economic forecasting in a pandemic: some evidence from Singapore
por: Chow, Hwee Kwan, et al.
Publicado: (2022) -
COVID-19 outbreak and beyond: the information content of registered short-time workers for GDP now- and forecasting
por: Kaufmann, Sylvia
Publicado: (2020) -
A multifactor approach to forecasting Romanian gross domestic product (GDP) in the short run
por: Armeanu, Daniel, et al.
Publicado: (2017) -
Research on GDP Forecast Analysis Combining BP Neural Network and ARIMA Model
por: Lu, Shaobo
Publicado: (2021)