Cargando…
Machine learning predicts cancer-associated venous thromboembolism using clinically available variables in gastric cancer patients
Stomach cancer (GC) has one of the highest rates of thrombosis among cancers and can lead to considerable morbidity, mortality, and additional costs. However, to date, there is no suitable venous thromboembolism (VTE) prediction model for gastric cancer patients to predict risk. Therefore, there is...
Autores principales: | Xu, Qianjie, Lei, Haike, Li, Xiaosheng, Li, Fang, Shi, Hao, Wang, Guixue, Sun, Anlong, Wang, Ying, Peng, Bin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2023
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9826862/ https://www.ncbi.nlm.nih.gov/pubmed/36632097 http://dx.doi.org/10.1016/j.heliyon.2022.e12681 |
Ejemplares similares
-
Development and Validation of a Risk Prediction Model for Venous Thromboembolism in Lung Cancer Patients Using Machine Learning
por: Lei, Haike, et al.
Publicado: (2022) -
Lung Cancer-Specific Mortality Risk and Public Health Insurance: A Prospective Cohort Study in Chongqing, Southwest China
por: Wang, Yuqi, et al.
Publicado: (2022) -
Development and validation of nomogram prognostic model for predicting OS in patients with diffuse large B-cell lymphoma: a cohort study in China
por: Li, Xiaosheng, et al.
Publicado: (2023) -
Development and validation of a risk prediction model for overall survival in patients with nasopharyngeal carcinoma: a prospective cohort study in China
por: Miao, Siwei, et al.
Publicado: (2022) -
Nomogram prediction for the risk of venous thromboembolism in patients with lung cancer
por: Lei, Haike, et al.
Publicado: (2023)