Cargando…

Modified rougan decoction alleviates lipopolysaccharide-enrofloxacin-induced hepatotoxicity via activating the Nrf2/ARE pathway in chicken

Liver injury plays a heavy burden on the chicken industry. Although modified rougan decoction is a prescription for the treatment of liver disease based on the classical prescription of rougan decoction (containing peony and licorice). However, the effect and mechanism of modified rougan decoction o...

Descripción completa

Detalles Bibliográficos
Autores principales: Wang, Wenjia, Shi, Yu, Qiu, Tianxin, Meng, Jinwu, Ding, Jinxue, Wang, Weiran, Wu, Desheng, Li, Kun, Liu, Jiaguo, Wu, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9827067/
https://www.ncbi.nlm.nih.gov/pubmed/36584418
http://dx.doi.org/10.1016/j.psj.2022.102404
Descripción
Sumario:Liver injury plays a heavy burden on the chicken industry. Although modified rougan decoction is a prescription for the treatment of liver disease based on the classical prescription of rougan decoction (containing peony and licorice). However, the effect and mechanism of modified rougan decoction on the liver remain unclear. In this study, the effects of the water extracts (MRGD) and the alcohol precipitates of water extracts (MRGDE) against lipopolysaccharide-enrofloxacin (LPS-ENR)-induced hepatotoxicity were discussed in vivo and in vitro. The isolated hepatocytes and 128 one-day-old Hyline chickens were considered research objects. The indices of liver injury and oxidative stress were evaluated by hematoxylin and eosin (H&E) stained and the assay kits, and the nuclear erythroid 2-related factor 2 (Nrf2)/antioxidant responsive element (ARE) pathway was detected by the RT-PCR, western blot, and immunofluorescence tests. All data were analyzed using the IBM SPSS 20.0 software. In vivo, the structural integrity of the liver was maintained, AST, ALT, and MDA levels were decreased, and antioxidant enzymes were increased, confirming that the oxidative stress was reduced and liver injury was alleviated. Correspondingly, MRGD and MRGDE were observed to improve cell viability and decrease lactate dehydrogenase (LDH) in vitro, and the cell oxidative damage was reduced. In addition, the nuclear translocation of Nrf2 was improved significantly, and the mRNA and protein expression levels of the related genes were upregulated. In conclusion, MRGD and MRGDE can exert a protective effect against LPS-ENR-induced hepatotoxicity by activating the Nrf2/ARE pathway, which might be a potential therapeutic prescription for preventing or treating liver injury. Notably, no significant difference was found between the 2 extracts, suggesting that a depth extraction method did not always improve the efficacy of natural medicine. Our results provided new insights into finding effective hepatoprotective medicine.